Dealing with jit.qt.movie

Basic Operation

czmetr033.5 1. | [r40 |

read start stop rate $1 frame $1

jit.qt.movie 160 120

Figure 1.

Jit.qt.movie will be the source of media in most of your patches. In a nutshell, it
is the QuickTime movie application embedded in Max. You can get everything
most people need from jit.qt.movie with just five commands. Jit.qt.movie is
initialized with the dimensions of the output matrix. Media of any size will be
interpolated to these dimensions. The type will always be 4 char. (Alpha values
are respected, but will almost always be set to 1. This is determined by the
program that created the movie.)

Read

Read loads in a movie. It will take anything that the real QuickTime player will
show. If you are on a Mac and need windows formats you will want Windows
Components for QuickTime from Flip4Mac or Microsoft. This is a free download
that lets you view WMV and so forth. If you pay a bit, you will gain the ability
to convert media from one format to another. If you want to clear the movie, use
the message dispose. Read opens the movie file and loads a couple of frames into
memory, but the movie will stream from the disk—if you need to stream several
movies at once from something like a flash drive, performance may be poor. The
loadram command will copy the movie into memory for rapid access. When the
copy is completed, either loadram 1 (successful) or loadram 0 (unsuccessful) will
be sent out the right outlet.

Start and Stop

Movies begin playing when loaded, unless the attribute @autostart is set to 0.
Matrices are output when bangs are received, but if bangs are interrupted, the
movie continues playing. When the bangs begin again, it will be later in the

movie. The stop command will pause the movie and the current frame will be
output repeatedly. The start command puts the movie in motion again.

Rate

Rate controls the rate of playback. This is a float—1.0 is the normal speed. It is
the nature of movies that slowing down results in jerky motion. Negative
numbers will show the movie backwards.

Frame

The frame command will cue the movie up to a desired frame. This uses a quick
algorithm to find the frame, which for obscure reasons occasionally goes wrong
with long movies. If the correct frame number is critical, there is a more precise
but slower command frame_true. The command jump nn will jump forward nn
frames. Jump with a negative argument will jump back. There is a corresponding
jump_true.

Looping and the Playbar

‘5| Lo | Playbar

imetro 333 M 4 r 2

read start stop loop $1 loopstart $1 loopend $1

loopreport 1 getduration getlooppoints looppoints

jl-t.qt.movie 160 120

Emte loopnotif;

read bounceBack.mov 1

Figure 2.

Movie playback can also be controlled (in Max 6) by a widget called the playbar,
which was originally designed to control a primitive movie object called iMovie'.
Usually we place the playbar below the jit.pwindow, but I have shown it above
to clarify the relationship with the jit.qt.movie object. The playbar is patched to
the jit.qt.movie inlet as shown. This instructs the two objects to link up behind
the scenes so the playbar knows where the movie is and the movie knows what

the playbar wants it to do. Actually, all you really need to show a movie is the

' This was long before the apple product of the same name.

playbar and a read message, even the metro is unnecessary, because jit.qt.movie
will automatically output a matrix for each frame. However, the bangs are
required to show movie cueing.

The button at the left end of the playbar controls play/pause. As the movie plays
the circle moves and shows progress. When playback is paused, dragging the
circle will recue the movie— the metro will then display the current frame. The
triangular widgets near the right step back and forward by 10% of the movie
duration. The arrows at the right indicate the loop mode. The default mode is
simple looping, but single play and back and forth modes are available. The loop
start and end can be set by dragging the faint vertical lines. Looping can also be
controlled by commands:

Loop setup

The loop command can take values of 0 (no loop) 1 (loop) and 2 (loop back and
forth). Loop 3 will set single play between the loop points.

Looping occurs between loopstart and loopend which are specified in QuickTime
units. These are arbitrary time units assigned to each movie. The default size of a
unit is 600 per second, but a different size can be chosen when a movie is first
created. It's good to know the duration of a movie when you set loops, so use the
getduration command to find out. The message duration nn will be sent from the
right outlet. Dividing this by 600 will probably get you the length in seconds, but
perhaps not. That’s covered in more detail in the next section.

The looppoints command can be used to change loop start and loop end together.
Looppoints with no arguments will set looping to the entire length of the movie.

If the attribute @loopreport is set to 1, the object will output the message

loopnotify from the right outlet when the movie loops. This can be used with a
route object to get a bang as shown in figure 2.

More About Time

o)

cimelro 333 read start stop time $1 frame $1

j-if.qt.movie 160 120 getfps gettimescale getduration getframecount gettime

timescale 600

Time in a QuickTime movie is measured in QuickTime units, which defaults to
600 per second. This is intended to avoid the confusion caused by differing frame
rates, sample rates and so forth in the various media that can be in a single
movie. I suspect 600 was chosen because the common rates of 24, 25 and 30 fps
are simple factors. However, software movie editors allow a choice, and you may
encounter other size units. For instance, the countdown movie in the Max
distribution has a timescale of 24

There are several commands that will solve the mystery of time in a movie
* Gettimescale will return the number of QT units per second in the movie.

* Getduration will return the length of the movie in QT units. Once you
know the time scale, you can accurately figure out the length in seconds.

* Getframecount will return the number of frames in the movie. You can use
this to calculate the number of QT units per frame, but the duration does
not have to be an exact multiple of whole frames, so round up.

* Gettime will return the current place of the play point in the movie in QT
units.

* Getfps will return the frame rate of the movie.

Now you can use time or frame to cue into a movie and know exactly where you
are.

You can adjust the playing time with a scale command. The command takes four
arguments: track number, start of section to scale, end of section to scale, and
target value for new end of section. For instance, with a movie that was 240
units’ long, scale 1 0 240 120 resulted in a movie that played in half the time. The
command scale 1 0240 480 doubled the length of the movie. This is done by
skipping frames or playing frames twice—there is no attempt to smooth the
motion.

Zoom in on a Movie

q-metro 333 read start stop dispose getmoviedim

210
["30 | [-210 |

450

usesrcrect $1 Eak srcrect 0 0 720 480

ji.t.qt.movie 160 12g

moviedim 720 480

2The one I tried had a timescale of 24.

Figure 4.

]it((.;qt.movie has source and destination dimension commands, but they are
slightly different from the jit. matrix versions. To use these, you need to know the
native dimensions of the movie, which are available with the getmoviedim
command.

Source

Source dimensions are specified with the coordinates we used for rectangles in
jit.lcd—Left, Top, Right, Bottom. The command srcrect with these arguments will
set an area of the movie to bring out in a matrix. Usesrcrect turns the feature on.
These values are related to the movie’s native dimensions, not the arguments in
jit.qt.movie. One nice application of this feature is we can get the full resolution
of just part of the image in a small window. For comparison, figure 5 shows the

result of importing the image at low resolution then zooming in using a matrix:
&
jitmatrix 4 char 160 240

@usesrcdim 1 @srcdimstart 7 52
@srcdimend 46 112

Figure 5.

Destination

a-metro 333 read start stop dispose getmoviedim

(40 | [1121 |

usedstrect $1 p-ak dstrect 0 0 160 120

ji.t.qt.movie 160 129

moviedim 720 480

Figure 6.

Thge destination commands are similar: usedstrect and dstrect with Left, Top Right
Bottom arguments. If you want to get the movie inset in black like figure 6, you
need to have the destinations set up before you load the movie. Dispose is the
only way to get a black matrix after a movie has been shown.

Movie Tracks

QuickTime movies are complicated structures make up of individual clips of
media organized in tracks. It's actually much like a pro tools or final cut project,
with a master document and a folder full of media files. A QuickTime movie
may be self-contained, with all of the media wrapped up in a single file, or it may
just have references to files elsewhere on your computer’. There’s no way to tell
just by looking at the file- you just have to make sure to check the correct option
when creating the movie.

Emetro 33,5

1)

X

(=] |

read blading.mov start stop gettrackinfo p-ak trackenabled 0

j'i-l'.qt.movie 160 122

Bute trackinfg trackinfo 2 "unnamed
N video™ video 1 0
route 1 2

"unnamed sound" "unnamed video™
sound 10 video 10

Figure 7.

Yogu can discover what tracks are in a movie with the gettrackinfo command.
There will be a separate trackinfo message for each track, with the number,
name, enabled state, and layer assignment’ for each. (If you add a number to
gettrackinfo, there will only be a message for the appropriate track.) In figure 7, I
have obtained trackinfo for the Blading.mov movie from the Max patches folder.
This has two tracks, one audio and one video. Usually all we want to do with
tracks is enable or disable them, and figure 7 shows a simple way to do that with
the trackenabled command. The arguments are track number and 1 for enabled or
0 for disabled.

Movie Audio

When a quicktime movie has audio, that audio plays directly to the computer
sound output, not Max. The overall audio volume can be controlled with a vol
command, with a number from 0 to 1. Audio can be controlled for individual
tracks by sending commands to the proper track. They take the form command
tk nn, where tk is the track and nn is the value.

* In official documentation, Apple refers to the container file as a movie and the
self contained version as a QuickTime movie, a distinction too subtle for me. I
often get movies I can’t play because they are missing media files.

* There can be more than one visible track, say text and video, or partially
transparent video and fixed background tracks. The track with the lower layer
value is in front.

* Trackvol has the range 0 to 1.0.
* Trackpan has the range -1 to 1.0. 0.0 is center pan.
* Tracktreble is a mile EQ with a range of -1 to 1.

* Trackbass has a range of -1 to 1.
There are corresponding get- functions for these.

czmetro 333

read blading.mov start stop vol $1 trackvol 1 §1

jitqtmovie 160 120

trackpan 1 $1

tracktreble 1 $1

trackbass 1 $1

Figure 8.

q-metro 333

I

read blading.mov soc aud soc gettrackvol 1 trackvol 1 $1

jit.qt.movie 160 120

socexport "Macintosh
HD:/Users/peterelsealLibrary/Applicati
on Support/Cycling
'T4/spigot-cache/blading.mov.aif" 1

spigot~ aud

B <N

Figure 9.

Movie audio can be routed into MSP with the spigot~ object. Spigot~ requires a
unique name as an argument. The command soc name to jit.qt.movie will cause
the audio track to be exported to spigot~, which will play it in synchronization
with the movie. Once this is done the direct audio will be shut off and the track
audio commands to jit.qt.movie will no longer function. The soc command with
no name will restore audio to the computer output. Incidentally, jit.qt.movie to
spigot~ is the only way to play mp3 files in Max.

Of course many movies do not have any sound. If you want to use jit.qt.movie to
add a sound track to a movie, follow this procedure.

* Read the movie.

* Determine the duration with getduration.

* Apply this message: insert dialog track 1 0 <duration> -1 0 <duration>
* You should now hear the sound as the movie plays.

Saving and exporting

Once you have modified a movie, you can use savemovieas command to make a
copy with your changes. This creates a movie with no media—it cannot be
moved to another environment, but will work fine as long as the constituent files
are undisturbed. To get a self-contained movie use the command export fulldialog.
This will open a window that lets you pick export options, name the file and save
it.

X
qmetro 33.3 insert dialog track 1 0 54400 track -1 0 54400

read start stop savemovieas export fulldialog

jitqtmovie 160 120

Figure 10.

There’s a lot more to jit.qt.movie than is covered here. Study of help and
reference files with a fair amount of experimentation will reveal how to add all
kinds of tracks, cut and paste within tracks, apply effects, and generally be
creative with the quicktime system.

