Optimization

Adventures in optimization

Doing complex math in expr, gen and pix

Every Max/]Jitter programmer hits the wall eventually. By hitting the wall, [mean
developing a patch that is just too much computation for one frame of video at 30
FPS. When you hit that wall, the framerate drops, and/or interface actions get
sluggish and eventually hang up. Worst case, you have to force quit Max. With each
generation of Max, things have gotten better (and computers have gotten better) but
there is always another wall to hit.

The basics of optimization can be written down in a list, mostly of things not to do.

* Never use two objects where one will do. The slowest part of max is sending
messages from one object to another. Some third party objects (like lobjects)
will give a performance boost because they move complex operations into
one object. The expr object is faster than a lot of loose math boxes.

* Don't do anything twice in a frame. Many of the help patches are driven by a
2 millisecond metro, but the screen is only redrawn every 15 ms, and every
30 ms is plenty. Convoluted patches often wind up with duplicate actions
hidden in the tangle.

* Minimize the use of display objects. A single jit.pwindow can cost 5% in
efficiency, and if your patch is littered with them it will be slow. A
jit.pwindow in a closed subpatch is still costing something.

* Minimize the use of buttons to convert messages to bangs. These aren't as
bad as pwindows, but still slow down the screen draw process. Use a trigger
object instead.

* Keep your computer lean and clean. Don't run unnecessary applications,
keep 20% of your hard drive clear. Mountain Lion is particularly nasty as it
restarts apps that were running when you last shut down.

* Optimize your computer. Everything is memory hungry, especially as we
move to 64 bit applications. Add memory if you can, update the graphics card
when offered.

Chladni Patterns: a case study.
Chladni patterns are the shapes you get with you sprinkle four on a metal plate and
bow it. They show the resonant nodes as you get various harmonics out of the plate.

Figure 1. Some basic Chladni patterns

Peter Elsea 3/18/13 1

Optimization

I find these figures interesting, especially if | overlay more than one harmonic at a
time.

Figure 2. Chladni patterns in red and green

There are several approaches to computing these figures. The patterns in figure 1
and 2 were produced with this formula:

cos(nxm/Lx)*cos(mym/Ly) - cos(mxm/Lx) * cos (nym/Ly)

This value is computed for each pixel. Each vibrational mode has two harmonic
numbers, n and m, which represent the horizontal and vertical standing waves. The
subtraction in the formula could be an addition instead--this has the effect of
inverting the phase of the vertical wave. X and Y are the coordinates of the pixel, and
Lx and Ly the dimensions of the plate. The use of cosine functions is a result of
supporting the plate at the middle. Sine functions can be used instead--this produces
a different series of often asymmetrical figures (supported at the edges.)

Figure 3.

All of these images are produced with two harmonics, applying one to the red plane
and one to the green plane. The blue is calculated as the compliment of the sum of
the two figures- in other words, deep blue appears where there is no vibration
(nodes).

The values in each pattern were squared to intensify the edges. If squaring is not
used, the absolute value must be found.

Output with squaring Output without squaring
Figure 4

Peter Elsea 3/18/13 2

Optimization

Episode 1: Brute force.

Needless to say, this is a heavy computation, especially if you want decent definition.
In the original version (which was pre-jitter) it would take nearly a minute to
compute a 256 by 256 pattern. Of course this was in 1999 on a G-3 computer.

gmetro 35

o g

p chladeF p chladeF

1|t matrix 1 char 640 482]lt matrix 1 char 640 482
o= ‘:.,: .
poomposiis Brute Force

Figure 5.

Figure 5 shows the overall patch used. I compute patterns in two matrices and
combine them with the composite subpatch. Figure 6 shows how the combination
works. The red and green matrices are assigned to the proper layers with jit.pack.
Inlet 1 is a matrix of all 1s for the alpha layer.

Inlet 2 is the red layer

Inlet 3 is the green layer.

Inlet 4 is computed from the red and green layer. It will be blue where there is no
red or green.

Peter Elsea 3/18/13 3

Optimization

Bang to output
a Creen
ﬁ I1o’adbang a -
setall 1. —1

jit:matrix 1 char 640 480 l'f°p @op +
T, ™ . =
Apha fs]g'Op i i

jit.pack Blue = 255 - (red+green)

Figure 6.

The real work is in the chladniBF subpatch:

ﬂ bang to calculate

expr cos($f3 * $f1 / 640.)* cos($f4 * $72 / 480.
-I_ucos(sm * $f1/640.)" cos(Sf3 * Sf2/ 480.)

—

o
== B3 I
pack 00 0.
T

setcell $1 $2 plane 0 val $3

.
a

Figure 7.

The top uzi generates the Y addresses. For each Y 640 X addresses are generated.
Each step of the lower uzi triggers the expr object.

And of course the expression is key. Here is an enlarged shot of the expr:

(;(pr cos($f3 * $-f1 /640.)" cos('§f4 * 92/ 480.')b
- cos($f4 * $f1 / 640.)* cos(Sf3 * Sf2 / 480.)

——
Figure 8.

The expression is pretty close to the formula, with $f1=X, $f2=Y. (We have to
subtract 1 from the uzi index to get the address range of 0 to L-1.) I have left the

Peter Elsea 3/18/13 4

Optimization

multiplication of n and m by PI outside of the expr so they are only done once. So $f3
= nm and $f4 = mm. The L values will never change, so they are constants rather than
inputs. Squaring is also outside of the expr, as the most efficient way to square a
number is to multiply it by itself.

The addresses and values set cell values in the matrix. Setting individual cells is
slow, so it takes nearly 5 seconds to generate a complete image. Upping the
resolution to 1080 by 768 nearly triples the number of calculations. This is not what
[would call a responsive system.

Episode 2. Using jit.expr
Jit.expr allows you to write a piece of code that will be applied to every cell in a
matrix. This eliminates the biggest bottleneck in Max, message passing from object
to object. In jitter, matrix data is not passed along the patchlines, just the name of a
matrix where an object will find data to work on. The jit.expr version of the
subpatch in figure 7 is in figure 9.

m

n

a 8
—T—1 _

*3.1416 * 3.1416

f";

pak setall 0. 0.

jit.matrix 2 float32 640 480

jit.expr @inputs 2 @expr "cos(in[0].p[0] * norm[0]) * cos(in[0].p[1] * norm[1])
- cos(in[0].p[1] * norm[0]) * cos(in[0].p[0] * norm[1])"

o

.
%

N

jit.op @op *
T

Figure 9.

ji‘t.expr @inputs 2 @expr "cos(in[0].p[0] * norm[0]) * cos(in[0].p[1] * norm[1])-
-Tcos(in[O].p[ﬂ * norm[0]) * cos(in[0].p[0] * norm[1])"

Figure 10.

Since jit.expr works entirely within a matrix, it needs an appropriately dimensioned
matrix to work on. This is created by setting everything on the first plane of a 2
plane matrix to nm and everything on the second plane to mm. These are accessed by
the operators in[0].p[0] and in[0].p[1]. Jit.expr offers the operators norm|[0] to
provide X/Lx and norm[1] for Y/Ly. All of this math occurs immediately after the
matrix hits the jit.expr object, with no need to step through every address. This

Peter Elsea 3/18/13 5

Optimization

process is too fast to measure. Dragging on the float number box produces a smooth
transition through intermediate figures. It only gets jumpy if [try to update all four
harmonics at once.

Episode 3: Compiling code with Gen

The next step in speed comes with a slight extra charge in Max 6. This is gen. Gen
allows you to construct your own object as if you had downloaded the object
development kit, spent a month or so learning how to use it, and written C code
specific to your task. A gen object is nothing less than a code compiler. The subpatch
that contains the jit.gen object is even simpler than what we have seen before. There
is a input matrix, but all that shows of jit.gen is the object.

2
l2. |

]

ak 0. 0.

HIHE

o

—_

setall $1 $2, bang

1|

jiIt.matrix 2 float32 1080 76§

jitgen

.

Figure 11.

If you double click on jit.gen, you see the window shown in figure 12.

Peter Elsea 3/18/13 6

Optimization

e 00 untitled (unlocked)

| 99,‘1,9,‘1 Inspector | Reference | Max |

in 1 norm norm_1 = norm;

I 2| swiz_2 = norm_l.aq;
* Pl swiz_3 = norm_l.r;
4| mul_4 = inl * PI;
~ - - - swiz_5 = mul_4.qa;
swiz0 swizx swiz1 swiz y mul_6 = swiz_5 * swiz_2;
cos_7 = cos(mul_6);
3| swiz_8 = mul_4.r;
mul_9 = swiz_8 * swiz_3;
cos_10 = cos(mul_9);
mul_11 = cos_7 * cos_10;
I I I I mul_12 = swiz_5 * swiz_3;
cos_13 = cos(mul_12);
Ccos Ccos CcOos CcOos 4| mul_14 = swiz_2 * swiz_§;
cos_15 = cos(mul_14);
mul_16 = cos_13 * cos_15;
sub_17 = mul_11 - mul_16;

8| mul_18 = sub_17 * sub_17;

* *
HH 3| outl = mul_18;
1

*

I

out 1

* * * *

B0 8 8 68, @ 80

Figure 12.

The jit.gen window has two panes- the left holds an ordinary looking patch, and the
right shows the equivalent in code. Editing the patch edits the code. This is what
gets compiled into a single object.

Gen has its own set of objects (and they are different in the different flavors of gen:
gen~, jit.gen, jit.pix and jit.gl.pix). These are principally the operations available in
jit.expr and jit.op. There are some odd ones which need explanation.

The cell values are passed in as vectors with all the values found in a single cell.
Since the input matrix is 2 layered, the input vector in jit.gen has two values. All of
the values in a vector are processed by any object- for instance, the multiply by PI
affects both layers of the input.! If you want the individual values, as I do here, the
swiz operation takes vectors apart. Swiz 0 produces the first value from the vector.
You can also refer to the values in a vector asxy zw, or ar g b. The norm operator
produces the current address as a vector also, so swiz x and swiz y are appropriate.
The other operations should be pretty clear.

1 It would still be more efficient to multiply n and m by m at the setcell stage. I just
put it in here to show how it can be done.

Peter Elsea 3/18/13 7

Optimization

Episode 4: Jit.pix

Jit.pix is an optimization of jit.gen. It is optimized by restricting the type of input it
can deal with- only 2 dimensional matrices up to 4 layers may apply. This avoids the
auto dimensioning and interpolation overhead as well as simplifying the operators
themselves. The jit.pix version of our patch is the simplest looking yet:

n1 m1 n2 m2
[u[\z][13-) b4)
B e, v, THGEY o1}
ak 0.0.0.0. jit.pix changes input from

argb to rgba

Lli_nult 3.141593
setall $1 $2 83 $4, bang

1
‘Eilt:.matrix 4 float32 1080 76§

o jit.pix output is matrix in argb

jit matrix 4 char 1080 768

Figure 13.

There are no subpatches. Everything will be run from one master 4 plane matrix,
and compositing is handled in the gen code. Note that I am multiplying the n and m
values by PI outside of the jit.pix object. All code in jit.pix is performed for every
pixel. Once jit.pix is compiled, it is fast, but not so fast we can afford to throw basic
efficiency to the winds. The inner patch is shown in figure 14.

Peter Elsea 3/18/13 8

Optimization

. norm .
in1 in1

swizQ swizx swiz1 swizy swiz 2 swiz 3
a

. . - . :h . . ~
n1xI n1yI m1xI m1yI nZXI nZyI mZXI mZyI
e =

N

-

vec0001
1

out 1

Figure 14.

It's very much like the code in figure 12 but with a code tree for the red image and
the green image. The green image uses swiz 2 and swiz 3 for inputs. (Both objects
called in 1 refer to the same data.) There is only one gotcha here-- when a matrix is
transferred to jit.pix, the planes are rearranged from argb to rgba. This can be dealt
with in many ways, but the quick and simple fix is to swap patchlines as shown in
figure 13.

The composite function is handled by the objects in the center at the bottom. Vec is
an operator that combines single numbers into a vector. Out 1 places each vector
into the appropriate cell. Note that on the way out, images are again rearranged, this
time from rgba to argb.

Episode 5: The old route to the GPU

The computer is not the most powerful machine sitting on your desk. That honor
goes to the computer's graphic processor or GPU. In the tutorial on shaders in Jitter,
[show how to run code directly on the GPU using jit.gl.slab. The Cliff notes version
goes like this:

* Once an openGL context is set up with a named window and jit.gl.render, a
jit.gl.slab object can access the GPU to run code for a custom shader (texture
generator).

* Code is written in the glsl language (see www.opengl.org) and embedded in a
XML wrapper with a .jxs extension. Among other things, the wrapper binds
internal variables to parameter names

* Code is loaded with a read message as in figure 15.

Peter Elsea 3/18/13 9

Optimization

* Parameters within the code are set with the param message.
* The output is a texture, which can only be routed to videoplanes or to other
objects via the texture mechanism.

Figure 15 shows a patch to use slab.
n1 m1 n2 m2

9.] [7.] [5 | [3]
A ————

pak 0. 0. 0. pak 0. 0. 0.
gmetro 33 Imult 3.141593 Imult 3.141593
jit.matrix 4 char param nPI $1 $2 $3 param mPI| $1 S2 $3
1080768 >
read cc.chaladni12x.jxs
tb erase jtglsiabchia output of jitgl.siab is a texture

j;ri.gl.render chlg_ j'i.gl.videoplane chla @scale 1.1 0.82_5_

This window is named Chla

Figure 15.

The param message takes the name of the parameter as its first argument, followed
by the parameter values. In this case | named n nPI to remind me that it has already
been multiplied by m. nPI contains both n values as a vector.

The code for jit.gl.slab can be written in any text editor. I like to use Texwrangler.
The formatting and binding XML code is shown as listing 1.

Peter Elsea 3/18/13 10

Optimization

<jittershader name="chladni">
<description>
chladni pattern generator
</description>
<param name="nPI" type="vec3" default="2.0 2.0 2.0">
<description>mode n</description>
</param>
<param name="mPI" type="vec3" default="1.0 1.0 1.0">
<description>mode m</description>
</param>
<language name="glsl" version="1.0">
<bind param="nPI" program="fp" />
<bind param="mPI" program="fp" />
<bind param="tex@" program="fp" />
<bind param="tex1" program="fp" />
<program name="vp" type="vertex"
source="sh.passthrudim.vp.glsl" />

Listing 1.

Note the use of tags in listing one. It is the <param> tags that set up parameters.
Here there are two, nPI and mPI, which are vectors with 3 values (although I only
wind up using 22.) The nPI vector contains n values for all three planes, and the mPI
vector is similar. The bind tags connect parameters to variables as they are listed in
the code.

Shaders actually must have two programs in them, one for vertex manipulation and
one for fragment (pixel) processing. The program name tag with the vertex type
loads in a standard vertex routine that passes through the pixel coordinates and
texture dimensions. The fragment routine is where the Chladni patterns are
generated. It is shown in listing 2. Note the tag ends that follow the code. Leaving
these out will produce errors.

2] tried layering 3 different Chladni patterns in r g and b, but it was just too messy.

Peter Elsea 3/18/13 11

Optimization

<program name="fp" type="fragment">
<! [CDATAL

// Peter Elsea

//UCSC 2013

//Chaladni pattern generator
//setup for 2 textures
varying vec2 texcoordo;
varying vec2 texcoordl;
varying vec2 texdim@;

//modes and size
uniform vec3 nPI;

uniform vec3 mPI;

void main()

{
float normx = texcoord@d.x/texdim@.x;
float normy = texcoordd.y/texdim@.y;
float rout = cos(nPI.r *normx)*cos(mPI.r*normy);
rout -= cos(mPI.r *normx)*cos(nPI.r*normy);
rout = rout * rout;
float gout = cos(nPI.g *normx)*cos(mPI.g*normy);
gout -= cos(mPI.g *normx)*cos(nPI.g*normy);
gout = gout * gout;
float bout = 1.0 - (rout+gout);
vec4 mapped = vec4 (rout,gout,bout,1.0);
// output texture
gl_FragColor = mapped;
ks
11>
</program>
</language>
</jittershader>
Listing 2.

Note that all of this code is contained within a program tag and is tagged as CDATA.
The code in main() does not look much like the code produced by GEN, but does the
same thing. Note that operations on vector types like nPI affect all of the values in
the vector, unless they are brought out by swizzling- i.e. nPLr.

The performance of this patch is too fast to measure, even if [up the resolution to
full screen size.

Peter Elsea 3/18/13 12

Optimization

Episode 6: The easy way to shaders
We can use GEN to build a shader in jit.gl.pix. It's a lot like the jit.shader patch, but
instead of writing glsl code, we build a gen patch in jit.gl.pix.

n1i m1 n2 m2
[u [\2.][13. ‘]‘L4. |
ﬁ 0.'\' 0. 6(jit.gl.pix changes input
I?r[nult 3.141593 eSS
gmetro 33 ;retall $1 $2 83 $4, bang
t b erase

jit.matrix 4 float32 1080 768

output of jit.gl.pixis a

jit.gl.render demoglpix
= = texture

jit.gl.pix demoglpii

j'ﬁ.gl.videoplane demoglpix @scale 1.25 0.82

This window is named demoglpix

Figure 16.

Figure 16 shows the master patch- this is done in a jit.gl.render context like the
jit.gl.slab approach. The n and m values are passed in as a matrix as we did in jit.pix.
The patch in jit.gl.pix is in fact the same as the one in jit.pix. (Figure 17.) The
difference is in what happens to that patch. Jit.pix compiles the patch into C++ code
and runs it on the CPU. Jit.gl.pix compiles the patch into glsl and runs it on the GPU.
As far as I can tell the results are identical with my home made shader.

Peter Elsea 3/18/13 13

Optimization

in1 norm in1
swizO swizx swiz1 swizy swiz 2 swiz 3

» . - -

an ny]: mxI myI nx:[nyI mx:[myI
cos cos CoS oS cos cos CO0S cos

P
S

vec
I
out 1

Figure 17.

Conclusion:

My favorite Albert Einstein quote is "Everything should be made as simple as
possible, but no simpler." We use Max because it is the most direct way to meet our
artistic programming goals. Its main attraction is that simple goals are simple to
achieve. When our imagination becomes more ambitious, we ultimately get to the
point where the simple functions in Max will no longer do the job. Then we must
open one of the "secret closets" in Max to use the more complex and powerful
features. At one time, this was a long jump, directly to writing custom objects in C.
When Java and JavaScript were added to Max, a lot of power became available with
somewhat less intellectual investment. Jitter and jit.expr added a way to manage
complex high speed operations within the objects and patchline paradigm. Jit.slab
was the first path to the GPU in any programming language short of C++. Finally, Gen
has brought the patch paradigm to the highest levels of performance.

Peter Elsea 3/18/13 14

