CV.jit notes

Notes on the CV.jit Objects

The CV.jit objects are a suite of objects by Jean-Marc Pelletier that perform
computer vision operations on jitter matrices. They are available at
http://jmpelletier.com/cvjit/.

The same site holds his excellent jit.freenect.grab that brings the power of the Xbox
Kinect to jitter.

The only documentation to the cv objects are in the help files. Luckily these are
pretty extensive, but you may need to follow a round robin from helpfile to helpfile
to figure some things out. The information about how to actually use the objects is
best found by exploring some of the abstractions supplied for the helpfiles, which
often contain the word draw in the title.

Preparation

Effective computer vision often depends on modifying the image we are looking at
to exaggerate specific features. The following objects will be useful, or even required
for the processes discussed later.

Black and White

Most of the cv.jit objects will only work on a greyscale image. The easiest way to
derive this is with jit.rgb2luma, although is some special cases you may want to split
off one color instead. That is done with jit.unpack or a one layer jit. matrix with a
planemap attribute.

Resizing

Like any jitter objects, the cv.jit objects are most efficient with small matrices. The
cv.jit.resize objet offers better (but slower) interpolation than you get by just
running the image through different size matrices. Here are some examples:

Original .
Figure 1la

Peter Elsea 3/4/13 1

CV.jit notes

cv.jitresize reduced enlarged again
Figure 1b

As you can see in figure 1, the effect is like checking the cubic spline resample box in
Photoshop Image Size. Straight edges soften up a bit, but the overall effect is less
harsh, and really more accurate.

Threshold

Converting an image into distinct area of black or white is a necessary preparation
for many of the cv processes. In the usual technique a jit.op with one of the logic ops
such as > is used. However, this is only useable in near perfect situations. With real
images the lighting can vary enough across a scene to render this ineffective.
Cv.jit.threshold takes different approach. From the cv.jit.threshold helpfile:

Uneven illumination is often a problem when thresholding an image. Adaptive
thresholding addresses this issue by adjusting the threshold based on the brightness
of an area surrounding each pixel. The difference between the pixel value and the
average brightness of pixels within the distance set by the "radius" attribute is
calculated. If it is greater than the "threshold" value, the pixel value is set to ON. If
the "mode" attribute is set to 1, the calculation is reversed - in order to select dark
regions instead.

Figure 2 shows how well this works. The source image has dots of various darkness.
Thresholding with jit.op on the left is very sensitive to the absolute level of the
image. The fainter dots are left out. Of course the threshold cold be lowered, but in
most real life images, that would also bring up a lot of garbage. In CV jit.threshold,
we are really looking at the local contrast, so if the eye can see it, the patch can
probably detect it. Figure 3 shows an even more difficult situation.

Peter Elsea 3/4/13 2

CV.jit notes

B o)
| i |
gmetro 33.3 read vol0 start stop frame $1

o R— — B

j.;t.qt.movie 320 249_

e

(o7)) (o)
1.t.r902|.,m3 —— - .
threshold $1 mode $1 radius $1

jit.op @op > @val 12§ cv.jit.t‘nresholg

|
* &
®
R
Figure 2. cv.jit.threshold compared to jit.op
@
& &
&
®
. « *
original jit.op cv.jit.threshold

Figure 3.

Peter Elsea 3/4/13 3

CV.jit notes

Running Average

cv.jitravg will compute the average value of each pixel during a scene. If the image
is stable, this will essentially be the background for any quickly moving objects. The
absolute difference between the running average and current frame will go a long
way toward isolating the interesting parts of the scene. Moving objects will leave a
ghost, but that may actually be helpful in the thresholding process.

=

gmetro 333 (read wvol0 (start stop frame $1
R S ————

jit.gt.movie 320 242

jit.rgb2luma
T =l
N A
0.001
alpha $1
cv.jit.ravg @alpha 0.1
y F
%%‘Cch
l EAS
jit.op @op absdiff
/T N

Running Average Background removed Original
Figure 4

Peter Elsea 3/4/13 4

CV.jit notes

Pattern recognition.

Pattern recognition is a basic aspect of computer vision. The most advanced pattern
recognition in the cv library uses the cv.jitt moments object to analyze shapes, and
then either cv.jit.undergrad or cv.jit.learn to detect those shapes. An eventual
version of this tutorial will include that process. For quick and dirty pattern
recognition, the library includes simple tracking an face detection.

Faces

cv.jit.faces will detect a face in an image. That is, the presence of a face, but not a
specific face. A face is defined as features similar to two eyes, a nose and a mouth in
the correct relative positions. The face also needs to occupy an area of
approximately 20x20 pixels. The image needs to be prepared by converting to
greyscale and size reduction appropriate to the source material. Jit.rgb2luma
produces a greyscale image and cv.jit.resize will accurately reduce the size of the
image.

141

gmetro 333 read vol0 start stop frame $1

e —— e —— e

jit.qt.movie 320 240

T iy
jit.rgbZIuma

I

cv jit.resize @size 160 120
t b 1

getnfaces route nfaces
cv jit.faces | Faces Found

jlt iter

L.

framerect $1 $2 $3 $4 0255 0
i —

j_ipt:.lcd 4 char 160 120

- =
o) fod
=/ ‘I

Figure 5.

The output of cv.jit.faces is a matrix containing one cell per face. The contents of the
cell frame a square area around the face. The message getnfaces will trigger a report
of the number of faces currently detected, but does not go below 1. If no faces are
found, the output will be a single cell matrix containing all Os. The cells, once

Peter Elsea 3/4/13 5

CV.jit notes

separated by jit.iter are properly formatted to draw a box around the face as shown
in figure 5, or isolate a face in a window as in figure 6

141

gmetro 333 read vol0 start stop frame $1
M e e

jit.qt.movie 320 242

M
<7

ZH

rgbZluma

H‘E [2N

cIv Jit.resize @size 160 120
tbl

r-‘Uj

p trig_face

cv jit.faces h

jlt iter
T -

framerect $1$2$3$4 02550 gate

—

jitlcd 4 char 160 120

getnfaces route nfaces J’m P

jit.matrix 4 char 80 60 @usesrcdim 1

W98 Is the firstef)

Imult 5

I_a'x.dd -10-20 10 20 l:sium
srcdimstart $1 $2, sredimend $3$4 >0

| T
& &

Figure 6b Contents of trig_face

In figure 6b, note the use of source dimension to grab the appropriate area of the
original image.

Peter Elsea 3/4/13 6

CV.jit notes

Tracking

cv.jit.track will track an object as it moves around the image. The process requires a
greyscale image which is easily produced by jit.rgb2luma. The number of points to
track is set by the npoints attribute. There is no limit on this number, but
presumably trying to track too many will slow things down. The message [set index
X'Y] will begin tracking a point at location X Y. The index determines where the
point will be reported in the output matrix.

Movement of a point is inferred by "optical flow". That is, the relative intensity of
pixels surrounding the point are recorded and matched to nearby areas in the next
frame. If the same pattern is found in a nearby location the point is assumed to have
moved. The points are output as a 3 layer matrix long enough to hold all points.
Jit.iter will split this into lists of X Y and status (1=active, 0 = lost). Figure 3 shows
one way to use this data. The Lswap and Ladd objects convert the X Y position into a
rectangle that can be used to draw, for instance, a red dot.

=
gmetro 333 (read start (stop frame $1
B 4 i — A

jit.gt.movie 320 242
I
toll rtag
jit.rgb2luma set0 $1 %2
= J

cv.jit.track @npoints 1_

p colored_dot

jitled 4 char 320 240

B ot
@_rfoute mouse

Figure 7. Note red dot on white fish to left. That dot follows the fish.

Peter Elsea 3/4/13 7

CV.jit notes

The point to track is set by clicking on a particular fish. This sends teh mouse
message from the jit.pwindow as "tag", which produces a set message to cv.jit.track.

Figure 8 shows how the circle is superimposed on the image. First a trigger (t)
object sends the matrix to jit.lcd as the background. Note that the list token (1) is
used to get a matrix through trigger. The middle outlet of trigger sends the same
image to be processed, first by jit.rgb2luma then to cv.jit.track. after all processing is
done (which results in the appearance of the circle) a bang move the new image out
of jitlcd to the window. This is easily modified to color many dots by using the index
output of jit.iter to pick the color.

1)
1

jit.iter
Iswap 0 1 07

ladd-5-555

P —
000

I‘Ira:eoval $152$3 $4 Jintoval $1$253$425500

Figure 8.

1)
i &

jit.iter

unpack 00 coll colors

pack 000025500

0k -
ladd -5 -5 55

i
frameoval $1 52 $3$4000 prepend paintoval
J

Figure 9.

Peter Elsea 3/4/13 8

CV.jit notes

Blobs

cv.jit.label

There are many applications where we want to identify and track individual shapes
Once images have been through threshold to isolate the brightest or darkest areas,
cv.jitlabel can attach numbers to each distinct region or "blob". The output of label
is a one plane matrix of either long or char of the same size as the input. Each cell
contains the number of the region it is assigned to.

j'it' rgb2luma !T“l:?gl | 47‘ Iﬁ,?p,,ﬁl

1
threshold $1 mode $1 radius $1

M- 4

a/.jit.lhreshold

cv.jit.label @charmode 0 @threshold 22

p assign_colors

£
getcell $1 §2

|

ji.matrix
R
cell 216 31 val 1

ute YT10USE=
3 =

Figure 10.

In figure 10, I have assigned a color to each blob. The region number of any pixel can
be found by a mouse click on a blob. One of many possible methods of assigning
color is shown in figure 11.Coloring the blobs is only a tutorial aid, what we really
want is to find the location of individual blobs. Figure 12 shows one technique.

Peter Elsea 3/4/13 9

CV.jit notes

jit.expr @expr "in[0].p[0] * 100-_'_7

jit.expr @expr "in[0].p[0] * 503

l 4 ___/ jitexpr @expr "in[0).p[0] * 25"
J =

Figure 11.

L
cv.jit.label @charmode 0 @threshold 20

jit.coerce 1 char |' 1]
1 -
jit.expr @expr in[0]==in[1]

-

: 1
g jit.coerce 4 char

I

jit.findbounds @min 0.75 @max 1.
—— ~ -
176 14 266 47

Figure 12.

In Figure 12, the output of cv.jitlabel is a matrix of long. In order to be properly
manipulated by jit.op or jit.expr, long type matrices must be coerced to char type.
This is because the internal operations of both jit.expr and jit.op are done in floating
point, but as a convenience to users of the ARGB color system, numbers are mapped
from the range 0 255 to 0-1.0. When this is done, inaccuracies in the conversion
make it impossible to use the equality operator. When a matrix is coerced, the
normalize operation is skipped, so a value of 1 in a long matrix remains a 1 in a char
matrix. Once this is done, we can identify which cells are equal to any given index.
Figure 12 shows the location of region 1.

cv.jit.blobs.centroids

Once an image is labeled, there are many cv.jit operations available, some quite
sophisticated. Several of these operations are in the cv.jit.blobs family.
Cv.jit.blobs.centriod will find the center point of each region. Figure 13 shows it in
action.

Peter Elsea 3/4/13 10

CV.jit notes

[h24. | b1) (21)

- \) | |

3 T B =S ’
jit.rgb2luma ' threshold $1 mode $1 radius $1
—

M

cv.jit.threshold

cv.jit.label @charmede 1 @threshold 20
= -

>

sy
cv.jit.blobs.centroids |

I

jit.iter

Iswap 010 1

ladd -10-10 10 10
7

\ linesegment $1 $2 $3 $4, linesegment $1 S4 $3 $2

N

b
jit.lcd 4 char 320 242ﬁ_ﬂ’gb 25500 pensize22

Figure 13

The output of cv.jit.blobs.centroids is a matrix with X Y location and area of each
region identified by the threshold and label process. In figure 13, the XY values are
used to draw an X over each region. The area values could be used to restrict the Xs
to the largest objects, eliminating a lot of the noise from the ocean surface in this
image.

One flaw in cv.jit.labels is that the regions are arbitrarily numbered top down and
left to right. (That's from the first pixel in each region.) That means if objects trade
places, we loose track. Figure 14 illustrates this-- as the large bird moves down the
frame, his tracking color changes. He is region 2 in the left image, and 4 in the right.
Cv.jit.blobs.sort can help with this, but only in certain situations. Cv.jit.blobs.sort
follows the motion of the centroids and reassigns index numbers according to the
minimal motion from frame to frame. When blobs overlap, they merge into one.
That means one region will disappear from the list.

Peter Elsea 3/4/13 11

CV.jit notes

Figure 15

The movie in figure 15 is 5 bouncing dots. In the left frame, the dots are distinct, in
the right three have merged. There is no way to prevent confusion in this case.

Figure 16.

In figure 16, the situation is simpler, in that the dots don't collide as often. Here you
can see cv.jit.blobs.sort has kep the correct colors assigned, even as the objects swap
places. The subpatch assigning the colors is shown in figure 17

Peter Elsea 3/4/13 12

CV.jit notes

From jit.iter ﬁ a From cv.jit.blobs.centroids
2nd outlet 1

l cv.jit.blobs.sort @threshold 20

T —

get $1 jit.spill

L —

llist

?

* 30

T

hsl §1 255 128

M
frgb $1 52 $3
|

Figure 17. cv.jit.blobs.sort at work.

Some other cv functions
This section is incomplete.

Dilate and erode

Lo J

X
|

gmetro 333 read vol0 start stop frame $1

I — —— — ——

jit.qt.movie 320 240

.’L_. ——————,

&

jdlf.rg b2luma

-

o =

A.:L .
Ccv. jlt.erodg

Figure 18
cv.jit.dilate changes the pixel to match the greatest value of any surrounding pixel.

Cv.jit.erode changes the pixel value to match the minimum value of the surrounding
pixels.

Peter Elsea 3/4/13 13

CV.jit notes

X 74

1 - |
gmetro 33.3 read vol0 start stop frame $1
4

jit.qt.movie 320 240

) —-

jT.rgoZl.‘rra
T <

jj.op @op > @va 128 s =
e .

e
e e T ——

|
)
A
A
||
1
A

[

:

Figure 19 cv.jit.binedge

Peter Elsea 3/4/13 14

CV.jit notes

I _ |
gmetro 33.3 read vol0 start stop frame $1
eI - 4 B——
jit.gt.movie 320 240
gF((“‘-'11--—-:-:-:x_L:‘-:---—-13:1_‘--7“_..3
j:?t:.rg b2luma

(1e) [0

(.
threshold S1 range $1

f:;'.jit.canhy

Figure 20. cv.jit.canny (edge detection)

Peter Elsea 3/4/13 15

