Animation Notes

Notes on animation in Jitter

One of the main reasons for using Max/]Jitter is the potential for real time or
interactive response. Often this means moving things around on a screen. The trick
to getting convincing motion is to ensure that the object moves an appropriate
distance each frame and follows a graceful path. There are several approaches to
this.

Simple Motion with Line and the Like.
Line

If the motion is not complex, position coordinates can be generated as easily with
line as anything else.

next

4

co!l_mcﬁiog

unpack 0. 0. 0. 0. Contents of coll:

0,000 1000;

s B o = - 1,100 1000;
| | line 0. line 0. line 0. 2,0-0.7 0 1000;
T —Z— 3,-1-0.3-1500
Le———= 4. 00.8 01000

gate pack 0. 0. 0.

prepend position 0. 0.0.
I
jﬁ.gl‘gridshape GLtut @shape sphere @scale 0.1 @lighting_enable 1 @color 0 0 1 _1_

Figure 1.

Figure 11 moves objects around according to the contents of the coll. Each address
in the coll has four values-- X Y Z and the time to take getting there. If the gate is
opened, the motion will be continuous if a bit abrupt. The basic principle of this
patch can be used in many ways-- for instance clicking on a jit.pwindow could cause
some graphic element to move toward the mouse.

Bline

The flaw with the line patch is that when the jitter processing gets heavy, the motion
might be erratic. That's because line runs at its own rate regardless of what else is
going on. Thus if jitter calculations slow down the system, some outputs of line will
be skipped, and the object will make double steps. One solution to this is bline. Bline
uses an outside timebase (times are defined in bangs per segment), so it can be
driven by the master qmetro as in figure 2. That will make all steps the same size.
That is perfect for something that is being recorded by jit.qt.record, because the

L All of these patches require the rendering patch shown in figure 2 of the openGl

Peter Elsea 3/6/13 1

Animation Notes

frames in the resulting movie will be played equally no matter how rough it was in
real time.

s)

next

coll steps

unpack 0. 0. 0. 0. contents of coll:

0,000 30;
pack 0.0. pack0.0. pack0.0. rdraw 1,100 30;
-0.7 0 30;

Q bline 0. bline 0. 'bline 0.

P

pack 0. 0. 0.

gate
_> I¥

prepend position 0.-0.7 0.

I
jit.gl.gridshape GLtut @shape sphere @scale 0.1 @lighting_enable 1 @color0 1 1 1_

Figure 2.

Lpath

Of course moving objects are the best way to reveal the effects of jittery frame rates.
Bline will not fix this, as objects will pause when the going gets really rough. I added
Lpath to the lobjects to help smooth real time display out. Line and bline both divide
the path up into equal steps and put out the next value whenever it decides it is
time. Lpath reacts to bangs as bline does, but takes the extra step of calculating how
far the object should move in the time elapsed. This means real time performance is
spot on. (Although recorded motions may be jittery.)

next Contents of coll:
i B 0,0001;
coll moves 1;:0:007;
e 2,0-0701,;
- 3,-1-0.3-10.5;
Iswap 3 r draw linear $1 :
ey S 4,00801;

Q Ipath 1L
e o —

gate prepend position 0.-0.7 0.
I

jit.gl.gridshape GLtut @shape sphere @scale 0.1 @lighting_enable 1 @color 100 1

Figure 3.

Figure 3 shows lpath in action. It takes a list as its destination in three dimensions,
so only one object is needed. The second inlet (and argument) is the rate of motion
in GL units per second. Thus, if an object has further to go, it takes longer to get
there. Lpath also has an acceleration feature- instead of blasting out of the gate, it
gets up to speed smoothly, and also smoothly slows down as it approaches the
target. You can turn this off by setting linear mode.

Peter Elsea 3/6/13 2

Animation Notes

Motion Control by Vectors
If you want to model motion rather than follow scripted paths, you need to use
vectors. This is discussed in the tutorial "Vectors in Jitter".

Jit.Paths
? r draw
= append 00 0,
gate append 100,
i — append 0-0.8 0,
counter 0100 append -1 -0.8 -1,
N append -1 00,
/ 100 append 0 0.8 0,
closepath interpmode linear
0 2 Yy
eval $1 clear calchandlesf interpmode spline
b S =)
I
]_IE _gth = j_il.gl.path GLuﬁ
—_—

prepend position 0.928 -0.1216 0.016
@ 5
jﬁ.gl.gridshape GLtut @shape sphere @scale 0.1 @lighting_enable 1 @color 0 0 1 l

Figure 4.

The two path objects in jitter use the graphic definition of a path, that is, a complex
curve. Jit.path computes a path from a list of vertices. These are built up using the
editing commands append and insert. The closepath command adds a segment back
to the first vertex. The path may be output as a 2D matrix of vertices and tangents
(first outlet) or as a 1D matrix with points interpolated between the vertices. For
movement, there is the eval command, which takes an argument in the range 0- 1.0.
This produces an interpolated location along the path from the object's third outlet.
Figure 4 shows how to use this feature to move objects along the path.

Jit.gl.path will draw a path in a rendering context. It takes the same commands as

jit.path and interprets them the same way. Figure 5 shows the path as a line, but
there are other options.

GLtut GLtut

Figure 5.

Peter Elsea 3/6/13 3

Animation Notes

The path may be straight or curved. To curve a path, set the interpmode to "spline”
and send the command calchandles.

The jit.path object can also control movement directly.

|->-.<~| l‘.1’—v[timemode relative,
play $1 rate $1 append 0.000,
append 1. 100,
append 1.0-0.80,
start append 1.-1-0.8 -1, clear
T append 0.5-100,
stop agxnd 1.00.80, interpmode linear
(—J closepath
Jnext J interpmode spline
—
£
ji_t.path_@usetime l
——
prepend position -0.569242 -0.899986
I 0.570742

jﬁ.gl.gridshape GLtut @shape sphere @scale 0.1 @lighting_enable 1 @color 100 l

Figure 6.

To get motion out of jit.path, set the attribute @usetime 1. Then each point should
begin with a time value. This may be absolute (in which case the points will be
sorted in time) or relative, indicating time to reach the point from the previous. To
get motion, the play attribute must be set to 1 or the start command sent. Play 0 or
stop will prevent position outputs, but the internal time continues to accrue. Thus
when you send start again, the object will jump to the current position. To get an
object to pause in its tracks, manipulate the rate attribute. 1 is the normal value. A 0
will stop motion, and a negative number will move backwards.

Moving objects in Groups

Jit.gl.node

Sometimes we need to coordinate the movement of many objects to maintain a
larger structure. We have learned elsewhere how to move the entire universe,
which is properly known as the drawing context?. It is also possible to create a
hierarchy of sub-contexts and move them independently or in groups. One object
that does this is jit.gl.node. Figure 7 shows how to set up a hierarchy of nodes. The
top jit.gl.node object has the render context and a @name attribute. The @name
attribute creates a subcontext. The next node down uses this name as its context
and establishes a sub-sub-context with its own @name attribute. The Max
documents call this a parent and child relationship. The drawing objects in the patch
can use any of the @names, and will be grouped accordingly. Position, rotate and
scale commands are passed down the hierarchy, from parent to child, but
commands applied to a child do not affect a parent. Rotate and position commands
are additive-- each object has a position and orientation relative to the drawing

2 You send position or rotate commands to the jit.render object

Peter Elsea 3/6/13 4

Animation Notes

context origin, and position commands to the parent move that origin. Scale is
multiplicative. If a parent is scaled to 0.5, children scaled to 0.5 wind up at 0.25 size.
Color can be passed down, but overrides child colors.

0. 0.
&, =

pak rotatexyz 0. 0

—

ro.]
1
0.

J

jﬁ.gl.node GLtut _@name topNodg
Control everything

Lo JI
.

p-ak rotstexyz

Sle

lo.

L
.0,

o

.0

—

ﬁ.gl.node topNode @name rightNode
Control right system

[bo. [ro.][0]
S Hd{.

pak rotatexyz 0. 0

J

jit.gl.node topNode @name leftNode
Control left system

Figure 7.

cylinder 00.2 0.5
|

j?.gl.sketch topNode @lighting_enable 1
@color 1001

cylinder 00.2 0.5
|

ﬁ.gl.sketch rightNode @lighting_enable 1
@color 0101 @position0.4500

sphere 0.2

+

jit.gl.sketch rightNode @lighting_enable 1
@color 1101 @position 0.4500 G
cylinder 00.2 0.5

|

ﬁ.gl.sketch leftNode @lighting_enable 1
@color 0011 @position-0.4500

sphere 0.2
|

ﬁ.gl.sketch leftNode @lighting_enable 1
@color 0111 @position-0.4500

The image created by figure 7 is shown in figure 8, with various rotations applied.

No rotations

Cltut

TopNode rotatexyz 64 0 0

Peter Elsea 3/6/13

Animation Notes

RightNode rotatexyz 0 15 0 LeftNode rotatexyz 0 0 90

TopNode rotatexyz 0 132 0 TopNode rotatexyz 0 132 -90
Figure 8

The red cone belongs only to the topNode, and so follows that rotation. The green
cone and yellow sphere are associated with the rightNode, and receives a slight
twist in the third frame. The blue cone and sphere are associated with the leftNode
and get rotated 90 degrees in the fourth frame. Note that these rotations are relative
to the context origin, which is centered for all cases. Any rotation that is needed for
an individual object around its own origin would be applied to the object itself. In
the final two frames, the topNode is rotated, swinging everything around together.

n

a

Figure 9.

Peter Elsea 3/6/13 6

Animation Notes

[t is important to carefully consider what objects and contexts should receive
position and rotation offsets, as this affects how the objects move together. Figure 9
has the position offsets applied to rightNode and leftNode instead of the individual
objects, but has been sent the same series of rotations as figure 8.

Jit.anim.node

Control everything

turn 1200 turn-1200
' .J i
jit.anim.node

cylinder 00.2 0.5

Control right system

gesindnine anE jﬁ.gl.skelch GLtut @lighting_enable 1 @color 10 Ol

jit.anim.node @position 0.4500 cylinder 0 0.2 0.5
y - -]

- -
jit.anim.node @position 00 g jE.gl.sketch GLtut @lighting_enable 1 @color0 10 l
uslphere 0.2
Control left system ™ : T
jit.gl.sketch GLtut @lighting_enable 1 @color 110 1
turn 0120 turn0-120 = g
jit.anim.node @positicn-0.4500 cylinder 0 0.2 0.5
y = —]
- e 8
jit.anim.node @position 0 0 g jﬂ.gl.sketch GLtut @lighting_enable 1 @color 00 1 l
L sphere 0.2
|

jit.gl.sketch GLtut @lighting_enable 1 @color0 11 1

Figure 10.

Jitanim.node (animation node) provides another system for hierarchical control.
Jitanim.node provides two types of function: node grouping, and translation of
simple motion commands into the position and rotatexyz values jit.gl objects need
for orientation.

Grouping is established by patch cords. There will be one jit.anim.node object for
each jit.gl object we need to control. These connections are made directly as shown
in figure 10. Additional connections establish a hierarchy, as shown by the red cords
in figure 10.

The control commands recognized by jit.anim.node are turn, move, and grow.
These are relative, rather than absolute commands. Turn 12 0 0 is similar to
rotatexyz 12 0 0, except repeating the command produces a further rotation. To get
back to the original position, turn -12 0 0. Once a node has been turned, any move
commands are relative to the object's current orientation.

You can give a node an initial orientation with attributes, and that will be passed on
to any children, but a reset command will zero them out, leaving the children
behind.

Peter Elsea 3/6/13 7

Animation Notes

Animated Models

In the jit.gl world, serious animation is done with preconstructed models. Models
can be made in any number of applications? and opened in jit.gl.model. If the model
includes animation rigging (i.e. nodes) jitter can move parts of the model. The jitter
helpfiles include an animation model to play with: Seymour the Astroboy.

read seymour.dae [;]
drawskeleton $1
scale $1 getnodenames
= S
I;] nodereset kid_spine02
animenable $1 nodebind kid_spine02 someNode
J J__)

Jb
jit.gl.model GLtut @name kid

Figure 11.

Figure 12.

Seymour is shown in figure 12. He is loaded in the jit.gl.model object, and the
command animenable 1 lets him strut his stuff. If you enable drawskeleton, the
nodes and bones will be drawn.

The walking animation is built into the dae file. Position and size commands to
jit.gl.model will adjust his orientation. You can move Seymour yourself if you
discover the appropriate node names. The getnodenames command will produce a
listing like figure 13.

3 You can also find them on the internet at places like OurBricks and TurboSquid.

Peter Elsea 3/6/13 8

Animation Notes

nodenames kid_astroBoy_walkbake kid_boy

kid_pointLight1 kid_ambientLight1

kid_deformation_rig kid_root kid_spine01

kid_spine02 kid_neck01 kid_head

kid_headEnd kid_L _clavicle kid_L_shoulder

kid_L_bicep kid_L_elbow kid_L_forearm

kid_L_wrist kid_L_pinkyOrient

kid_L_pinky_01 kid_L_pinky_02

kid_L_pinkyEnd kid_L_middleOrient

kid_L_middle_01 kid_L_middle_02

kid_L_middleEnd kid_L_indexOrient

kid_L_index_01 kid_L_index_02

kid_L_indexEnd kid_L_thumbOrient

kid_L_thumb_01 kid_L_thumb_02

kid_L_thumbEnd kid_R_clavicle

kid_R_shoulder kid_R_bicep kid_R_elbow

kid_R_forearm kid_R_wrist

kid_R_pinkyOrient kid_R_pinky_01

kid_R_pinky_02 kid_R_pinkyEnd

kid_R_middieOrient kid_R_middle_01

kld R middle_02 kid_| R middleEnd

kid_R_indexOrient kid_R_index_01

kld R index_02 kid_| R indexEnd

kid_R_thu mbOrient kid_R__thumb_01

kid_R_thumb_02 kid_R_thumbEnd

kid_L_shoulder_parentConstraint2 kid_hips

kld o _hip kid_L_knee_01 kid_L_knee_02

kid_L_ankle kid_L_toeBall kid_L_toeEnd

kld R_ _hip kid_| R knee 01 kld R knee_02

kid_R_ankle kid_R_toeBaIl kid_R_ternd
Figure 13.
The names are dumped from the right outlet of jit.gl.model. You may want to trap
them in a umenu instead of a giant list. Note that each node name begins with the
name of the jit.gl.model object. You should name your model-- otherwise the names
will begin with something unwieldy and impermanent like u002300034.

Once you have the names, you can begin to experiment to discover how the model
moves. Nodes are controlled by the jit.anim.nodes object.

anim_reset

tun 1200 turn-1200
J

2]
" wm0120 turn0-120
F_J Y
turn 00 12 tun 00 -12
_J e

o~

jﬁ.anim.node @name someNode

Figure 14.

Peter Elsea 3/6/13 9

Animation Notes

You need to give a unique name to the jit.anim.node object so you can bind it to one
of Seymour's nodes in jit.gl. model. (Binding means to make two entities equal--
here, it means messages to jit.anim.node will also be sent to the bound node.) The
message "nodebind kid_spine02 someNode will establish a connection between the
patch of figure 14 and the kid_spine02 node in jit.gl.model . Having done that, the
turn command to someNode will produce the postures in figure 15

Cltut

Figure 15.

Figure 16.
Figure 16 shows the effect of move commands on this sort of animation. Probably
not what is needed, but occasionally useful.

Total control

read cat.dae

[
animenable $1

scale $1 $1 $1 f copynodestoclipboard

jit.gl.model GLtut @name cat

Figure 17.

Peter Elsea 3/6/13 10

Animation Notes

Figure 17 shows a simpler animation, a cat that bobs its head. We can persuade Max
to create a complete set of its nodes with a two step process:

1. Send the message copynodestoclipboard to jit.gl.model

2. Paste into any available window. (Like a subpatcher)

The resulting structure is shown in figure 18>
j?.anim.node @name cat_O_cat_smooth_bake_channg_l.
jit.anim.node @name cal_nekg
jit.anim.node @name cat_root

jit.anim.node @name cat_ass

jit.anim.node @name cat_b_l

jit.anim.node @name cat_b_r
j‘ﬁ.anim.node @name cat_taﬁ
j'i.anim.node @name cat_heag

jit.anim.node @name cat_fl

j'it'.anim.node @name cat_fr

Figure 18.
These are all of the nodes in the cat's skeleton. (Seymour's is enormous.) You can
send turn messages to any node, and it will control all of the elements attached.

Figure 19.

By applying some turns to the top node, I moved the kitty to a profile view, then
with various commands to the cat_head node I could make him nod and twist.
Figure 20 shows these modifications:

Peter Elsea 3/6/13 11

Animation Notes

turn 0 120

jit.anim.node @name cat_O_cat_smooth_bake_channe_l
jit.anim.node @name cat_nekg
j%.anim.node @name cat_rocﬂ

jit.anim.node @name cat_ass
jit.anim.node @name cat_b_l
jﬁ.anim.node @name cat_b_r

jit.anim.node @name cat_tail

turn 1200 twurn-1200

turn0120 turn0-120

turn0012 turn00-12

J)

I
it.a

nim.node @name cat_head

J

-}

J
anim.node @name cat_fl

fif.anim.node @name cat_fr

Figure 20.

There are several other objects that are useful in animation:

Jit.anim.drive controls jit.gl objects in a manner similar to jit.anim.node. It does not
do hierarchies, but has a wider range of move commands. It also boasts a direct
connection to the mouse and keyboard.

Jit.anim.path controls the motion of a jit.gl object like jit.path, but can also include
rotation and scale commands in the list of points.

The jit.phys objects allow you to design an environment with gravity, rigid obstacles
and collision detection.

Peter Elsea 3/6/13 12

