
Kyma 1

Notes on Kyma
pqe 2/4/09

The Capybara
The Capybara 320 is a “black box” signal processor. This means it has no user interface
of its own, it is set up by instructions from another computer called the “host”. It can be
instructed to perform any audio task from simple recording to re-synthesis of analyzed
sounds. The Capybara has its own set of audio connections, both digital and analog, as
well as MIDI in and out. It relies on the host computer for hard disk operations. The
software on the host that controls the Capybara is Kyma.

The Capybara is expandable—the DSP processors are on cards which can be added to
increase its number crunching power. At the moment there are 2 cards, each with 2
processors, making the system about one fourth as powerful as it can be. Since audio
signal processing is notoriously cycle hungry, it is not uncommon to run up against the
limits of our setup. (Of course, no matter how powerful the system was, there would be a
limit to its capabilities.) Various strategies for getting your work done despite these limits
will be presented a little later.

Kyma
Kyma is written in a computer language called SmallTalk-80. Normally we don’t care
what language a program was written in, but in this case the methodology and
terminology of SmallTalk are enough a part of Kyma that it may be worth while to learn
a little of the language. For instance, many of the sounds can have their behavior
controlled by scripts, and those scripts are written in SmallTalk.

One striking feature of SmallTalk is that it is an “object oriented” language. In object
oriented programming, the code is written in bundles called classes or class objects, each
of which handles some chore1. You typically start off with very simple class objects, and
make more complicated features by deriving new classes from the existing ones. When
you do this, your new object has all the functionality of the old one plus whatever you
have added. A nice bonus is that if you go back and modify the parent class, the changes
show up in the derived classes too! A derived class can have more than one parent, so
complex operations can be put together without having to re-invent any code.

In Kyma, the objects you can work with are called “sounds” (short for sound objects, I
guess), and are represented by icons that you manipulate in a graphic window. You
derive your own sounds from an assortment called the prototypes. The prototypes are all
complete enough to make some sort of noise by themselves. You modify copies of the
prototypes by replacing some of their component objects, adding other objects of your
choice, and setting parameters that control the operation of each object.

1 Max works this way.

Kyma 2

You can even convert your sounds into prototypes with their own icon if you like.

As you develop your own sounds, you keep them in a "Sound file". I would have called
this a "sounds file" myself, since a single file contains many sound objects. In any case,
this file should not be confused with a recording of sound, which Kyma calls a "sample
file".

Playing sounds is a three step process: the sound is compiled into code the Capybara can
read, the code is sent to the Capybara, and the Capybara starts running the code. Once the
Capybara is running, the host computer has very little to do, unless sound files are
needed. The Capybara has its own audio and MIDI connections, independent of the host.

Getting Started
Turn on the Capybara and patch it to a mixer before launching Kyma.
Launch Kyma by double clicking the Icon on the desktop.
If you see a software license agreement, accept it and Kyma will continue to load.
When all is ready, you will hear the word "Kyma" announced through the sound output.

The screen will now be cluttered with windows. These are what you may see:
• Prototypes -- contains building blocks for your own sounds
• The Sound Browser - this lists folders and files on the hard drive.
• A timeline -- a composing tool that lets you organize the playback of sounds.
• A Virtual Control Surface -- the window where user controls appear.
• Help Window -- explanations of various things.
• Status -- tells how the Capybara is getting along.
• A sound file -- this has an assortment of Kyma sounds under development, probably

belonging to the last user.
• An audio editor
• A spectrum editor
You can always show these windows by selecting them in the file menu. Kyma
remembers the situation when someone quits, and opens all the windows again.

Using the Sound Browser
The sound browser is a good way to get acquainted with the system and what it can do.
Maneuver around the browser until you see the Kyma folder. (Folders have a triangle by
them. Click the triangle to show or hide what's in the folder.) Double clicking on this will
open a new browser window that just has the Kyma items.

Items in the browser are color coded. There is a row of colored boxes across the top of
the browser. If you hold the mouse over a box (without clicking) an explanation of what
the color means will appear. As the explanation also says, you can show or hide this type
of item by clicking the box.

Sounds can be played directly from the sound browser. For example, navigate into
"Kyma Sound Library", then to "An Overview", then select "Effects-Doppler Shift".
Clicking the play button at the top of the browser will compile and play the sound.

Kyma 3

(Command K stops sounds playing). { Note: some of the sounds have a number in
parenthesis. This is the number of processors the Capybara needs to play the sound. Since
we only have four (two cards), some of the example sounds are not possible in real time.}

The window with sliders that opens as the sound plays is the virtual control surface
(VCS). Adjust the sliders with the mouse to hear the effect on the sound. Closing this
window does not stop the sound. Command K does. Controls in the upper left of the
virtual control surface allow you to capture the current settings as a preset (camera),
recall a preset, (drop menu), or randomize current settings (dice). Most sounds do not
have any presets initially defined, so if you want to play with presets, the first one to
capture and save is the default.

Note that as you move around the sound browser, you will often be prompted to save
changes. In general, don't.

Some sounds require MIDI input. You will usually see a green MIDI indication at the
bottom of the browser when a selected sound responds to MIDI. Patch a keyboard to the
MIDI input of the Capybara (not the computer) to use the control.

Some sounds process audio, this is indicated by a green arrow). These all have a default
sample file to hear the effect, but you can apply your own sound. Patch the sound source
to the Capybara audio input (not the computer input). Click the microphone button at the
top of the browser and the ->• button. Then play the sound - your audio should be heard.

What Kyma Can Do
Kyma does three kinds of thing:
1. Synthesis or sample playing
2. Signal processing
3. Re-synthesis of analyzed sounds.

Let's play with a few patches to see how these work.

Quick Start -- Synthesis with oscillator
Create your own sound file by choosing New from the file menu and selecting Sound File
as the type to create. Look in the prototypes window for "Oscillator" (in the Sources and
generators list). Drag it down into the Untitled window. This makes a new instance of an
oscillator. The original in the prototypes window will not be affected by anything you do.
Double click on your copy to open the editor window.

Kyma 4

The bottom half of the window shows the parameters for the oscillator. Control space
will compile and play2 the sound. The virtual control panel will open and you can control
the frequency and amplitude with sliders. Kill the sound (command K) and close the
control window. Looking at the parameters for oscillator, you will see these entries:

Envelope: !Amplow smoothed
The exclamation point at the start of AmpLow creates a slider in the VCS. This is called
an event value, and allows you to change parameters as the sound is playing. Event
values are shown in red. Smoothed is a smalltalk function applied to the slider value to
make changes gradual.

Frequency: !LogFreq smoothed nn
Here's another event value. You can put an event value in any parameter with an
italicized name. LogFreq is also smoothed, and the nn means the data is in MIDI note
numbers. Some event values are predefined as MIDI input. Try replacing this whole

2 So will cmd-P. If a sound is compiled already, cmd-R will play it again. The spacebar
pauses and restarts the sound.

Kyma 5

phrase with !Pitch. Compile the sound and play the keyboard. !Pitch is defined (in the
global map) as the note number and bend value from MIDI input. You can further
process the keyboard data by entering !pitch smooth: 300ms.

Choose Describe Sound from the Info window3 to see explanations of the other fields.
You will find out that oscillator is really playing a short recording of a sine wave. You
can change the sound by clicking the picture of a disk by the Wavetable field, hunting
around for the wavetables folder, and choosing something else, like cycloid2.

To add envelope control, find the ADSR prototype. (Envelopes and Control Signals)
Copy the prototype to clipboard (command C) and paste it into the oscillator envelope
field. You will see a yellow ADSR box appear in the envelope field (and an L indicating
left channel.). The ADSR is also supposed to appear in the upper half of the edit window
when you do this. If it doesn't, doubleclick in the blank area of the window. Now when
the sound plays, the virtual control surface has your complete ADSR settings. It's worth
looking at the ADSR parameters to see how it needs to be set up. Double click on its icon
in the upper half of the edit window and note all of the event names. Which are MIDI and
which set up sliders in the VCS?

3 Or, hold the cursor over the parameter name.

Kyma 6

Note: IF you try to play the sound while you are editing the ADSR, all you will hear is a
pop. That's because the selected sound is what gets heard, and you selected the ADSR to
edit it. Just click once on the Oscillator icon -- it will now be selected, even though you
are still editing the ADSR. There is a subtle change in color that indicates what is
selected.

So far, you can only get one note at a time. To make this polyphonic, find the MIDIVoice
prototype (MIDI In) and drag it onto the line4 between oscillator and the speaker.
MIDIVoice simply duplicates whatever is at its input enough times to play multiple
notes. (It also makes sure the right notes are turned off when you let go of a key.) Open
the MIDIVoice and set polyphony high enough to play the number of notes you want.

MIDIVoice has some options as to where the MIDI notes come from. Under source, you
will normally have MIDI input checked, but you could also play a MIDI file, or even an
algorithm (written in SmallTalk) from the script field.

This "basic beep" can be modified in the usual ways. To add a filter:
4. Drop a LowShelvingFilter on the line between the Oscillator and the MIDIVoice.
5. Copy and paste the ADSR5 into the frequency field of the filter

To include waveshaping:

4 Kyma is fussy about this operation. The point of the cursor arrow must be right on the
line when you let go. If it is on the +, you will get a mixer.
5 The one in the patch, not a new one.

Kyma 7

• Drop OddEvenHarmonicWaveshaping on the line between Oscillator and
MIDIVoice.

• Play with the settings (if you throw the ShapeFrom switch from Polynomial to
Wavetable it's going to be loud - be careful).

Having changed the sound, rename it MIDIbeep. Select the MIDIvoice, hit enter and
type in the dialog that appears:

Note that the editor window and the resulting sound are both named after the rightmost
object. There is an object called Annotation that is specifically designed for naming
sounds. It does nothing to the sound, but if you put it last in the patch you can give it the
name you want. Annotation also holds text that will appear in the VCS.

When you close the editor, you will see this:

Kyma 8

You should save changes you make here-- they are not written to disk yet, this just
updates the sounds file in memory. When you close that sounds file, you will finally be
saving to disk.

Sample playback with Multiwave KBD
Drag in Multiwave KBD from the prototypes window to your sounds file. (Sources and
Generators KBD Ctl). Double click on the icon to open the editor window. The top half
shows the object -- click on the dot at the left of the icon to unfold the patch.

The blue object is selected and will be
heard when the sound is played

The gray object is being edited (double
click to edit)

Parameter Fields

Switchable options

Drop sound on + mark to mix it
 in (a mix sound will appear).

Drop a sound on the line to
insert it in the signal path

Drop a sound on a sound to
 replace it.

Connections Parent Sound

The bottom half of the editor window shows parameter settings for the object that is
blue/gray or brown/gray. To look at the settings for the other object, double click on it.

Kyma 9

The first thing to notice when you look at parameters is to check the "parent" type. This is
given in the lower left corner of the window. You can see here that Multiwave KBD is
derived from a filter. The Describe Sound item in the Info menu tells what filter is
supposed to do and what the meanings of the parameters are. Notice in particular the
event values (They start with an exclamation point, show in red, can be changed during
the execution of a sound.) Many of these names are already defined as MIDI input, but if
an undefined one is used, it turns up as a slider in the virtual control window. The values
these represent can also be modified by math operators, such as [!resonance * 0.75].

Compile and play the sound6 with control spacebar; hold a MIDI key and experiment
with different frequency settings. Hit command K to stop. Now change Q to 50 and play
it again.

Double click on the Multiwave KBD icon in the upper part of the window.

 This is the source object. Note that it is derived from "sample". The describe sound item
tells that this loads a sample from the computer (kept in the Kyma folder somewhere)
into the Capybara and plays it. Gate determines when the sample is played. It can be
useful to trigger the sample with !keydown, or play it forever with 1.

You can change the sample easily enough: click on the disk icon next to Sample
parameter box. Navigate to Kyma:Samples 3rd Party:Serafine:Animals and choose
wolves. Compile and play. (Don't forget to click on the right icon to hear the entire
sound.) This is pretty high pitched, so we need to edit the frequency field. The frequency

6 The sound will be heard from the blue icon -- just click on an icon to turn it blue.

Kyma 10

field has quite a statement. In fact it may not all show, so put the cursor in the box and
cmd-L to show the entire equation in the large editing window7. The easy thing to do is
replace the whole works with !Pitch. Now compile and play it again.

Since we removed !brightness from the frequency parameter, the brightness control is
only changing the length of the loop. Try changing !brightness to !loopLength in the loop
length box and see what happens.

Processing
The Generic source is the main input for audio processing. There are several varieties of
generic source, but they are all the same sound with different options checked. The
source options are:
• Live -- from an input to the capybara.
• RAM -- a sample loaded off disk and played from memory.
• Disk -- an audio file played directly from the disk.

The prototypes window contains generic source objects already set for each of these
options. In addition to these, you can choose which (or both) channels and looping for
files and samples.

There are other sources that give you more control:
6. Audio input lets you pick one of 8 input channels (but there are only 4 in our system.)
7. Disk player lets you start from any point within a file and play at variable rate.
8. Sample has attack and release and loop points and other sampler goodies.

7 You can increase the size of the whole editor window by putting the mouse on the
lower right corner and dragging. The amount of the window devoted to parameters vs.
patch can be changed by dragging just below the patch area.

Kyma 11

You can now try any process by dropping the sound on the wires between the
GenericSource and the speaker. Exactly what happens when you do this is determined by
the "replaceable input" of the process.

The replacable input of the Chopper sound is Noise
(indicated by a cyan highlight)

When you drop chopper onto GenericSource,
Noise is replaced by GenericSource.

This replacement principle is used anytime it makes sense. You can designate the
replaceable input in a complex sound by the "Set Replaceable Input" item in the Action
menu.

Mixing patches
Suppose you want to sing along with your MIDIbeep patch. To do this, a GenericSource
must be mixed with the beep output. Open the MIDIbeep editior and drag a
GenericSource from prototypes onto the + just before the speaker icon. The result:

Kyma 12

The extra object is a mixer with two inputs. There is no control over the input levels to
start, but you can add them by typing !LiveLevel and !SynthLevel into the left and right
parameter boxes. (The retrograde and reverse options only function in timelines. Don't set
them in real time use or Kyma will hang up. Choose Force Quit from the Apple menu to
shut Kyma down when it is hung.)

Kyma 13

Euverb
Bring a copy of EuverbMono into your window. You don 't have to pick a source to start
with, because all of the processing sounds have one already. You may want to replace the
source - for instance, Euverb has a generic source, but if you want to use it with a sample
input, just drag a sample prototype onto the generic source icon.

Playing that combination, the default sample "count" will show off the reverb nicely.
Open the sample object for editing and connect it to the keyboard by replacing these
parameters:
• Gate -- !keydown
• Release Time -- !keyup
• Frequency -- !pitch nn

The other parameters of sample should look familiar after working with the Emu
samplers. Play with this a bit.

Now drag Euverb Stereo onto EuverbMono, replacing it. When you unfold the patch you
see a higher level of complexity. Sample is still the source, but it is split three ways. The
stereo signal from sample is converted into left and right signals with Channeller sounds
conveniently named leftChan and rightChan. Each of these is sent to a Euverb for
processing, and both signals are routed through an attenuator (renamed Input) and
combined with the original in a mixer. This kind of thing reminds me of patching the
modular synthesizer.

Kyma 14

When you play this, you will see several controls in the VCS. See if you can find the
parameters that are associated with these controls.

At this point, try the undo feature. It should take you back to the original Euverb with a
sample. Now find delay with Feedback and drop it on the Euberb. It's easy to try out
different processors this way, keeping the original sample to make comparisons clear. If
there is any type of audio processing left out of Kyma, I haven't heard of it. (If you try to
use too many processors at once, you will hear pops in the sound, and get a warning
window. The reverbs are especially bad this way.)

Resynthesis
Let's look at the prototype called Oscillator Bank. (Additive Synthesis). Copy it to your
sounds window, double click it for editing, and play it. It gives a rich bell sound at a
steady rate and pitch. Unfold the patch all the way, and you will see a time index and a
spect object.

The spect object is providing the spectrum for the Oscillator Bank. A spectrum is a
special type of control signal -- it carries the amplitudes of a Fourier analysis of some
preanalyzed sound. Oscillator Bank contains 128 Oscillators that can recreate sounds
specified by spectra (rather like MetaSynth). If you click the Spectrum analyzer in the
info menu, you can see the spectrum in action as the sound plays.

The spect object needs a time index -- that's a signal that varies from -1.0 to 1.0 over the
time it takes to play the sound once. The index determines which slice of analysis is

Kyma 15

currently controlling the oscillator bank. If you manipulate the time index, the timing of
the reconstructed sounds are changed, but not the pitch or timbre.

Let's see if we can MIDIfy this thing. Double click the spect object. Change the
Frequency parameter to !pitch and play. (Again, don't forget to select the right icon
before playing.) This gives us keyboard control of pitch, but the notes still come in a
steady beat. Now edit the time index. Put !keydown in the trigger parameter. (Believe me,
you really want to remember to select the right icon before playing!) Now it plays when
you hit the key, and BPM is only setting the length of the sound. Edit On Duration to say
(!duration * 10) s .

The final thing to fix here is that the end of the sound is too abrupt. Look in Envelopes
and Control Signals prototypes and find ADSR Drag&Drop. Drag and drop it on the line
from the oscillator bank to the speaker.

This will give you two new objects - one of them the ADSR, which you have already
met. If you open ADSR Drag&Drop, you will see it is derived from Product, which
merely multiplies two signals. (Like [*~] in Max). If one of the signals is constant or
changes slowly, what you get is a volume control. Now playing the sound gives a
graceful ending, at least if you let go of the key at the right time.

Kyma 16

What is going on in this patch? The oscillator bank contains 128 oscillators. Their
amplitude and frequency are controlled by the spectrum signal from spect. (Spect has
NbrPartials set to 128 to match.) This spectrum is in a file, and was derived from a real
sound. If you look at spect and click on the disk icon, you can find different spectra to
play with. (In the Kyma: Spectra folder). You can create your own spectra files with the
Spectral Analysis tool. Just chose the tool and follow instructions. You can also edit a
spectrum -- open a spectrum file from the sound browser to get it into the spectrum
editor.

If you try, you will find out you can't make this one polyphonic. Spectral resynthesis is a
very expensive operation. The advantage of resynthesis is that you have independent
control of the playback speed (in the time index) and the pitch (in the spect.)

A spectrum control signal has separate channels for frequency and amplitude envelopes
of the partials The SumOfSines sound allows you to take the amplitudes from one
analysis file and the frequencies form another, allowing some interesting cross synthesis
effects. The Piano Man example demonstrates this. Copy the PianoMan(2) sound from
the cross synthesis folder and open it up. Double click on the left piano man box which
open the SumOfSines in the editor. Trying it, you will see that a steady morph from piano
to speech is controlled by a low frequency oscillator. Replace this by entering !morph in
the DBMorph parameter. This will give you a morph slider that does the same thing the
LFO did. Enter !morphPch in the PchMorph field. Now you can hear the effect of
swapping pitch envelopes. Try the patch with other analysis files.

When you combine spectra like this, you may find problems with timing between the
two. The synchronizing Spectra item in tools will allow you to adjust the time of one
spectrum to match another.

GA Synthesis
Another resynthesis strategy is Group Additive Synthesis. This is a simplification of
spectral resysnthesis. The GA Analyzer looks at a spectrum and finds groups of spectral
lines that can be combined into a more complex waveform. These are then loaded into a
GA Oscillator, which is controlled exactly like the spect and Oscillator bank, but is much
more efficient.

The GA oscillator can contain two GA Analysis files. This gives us an easy way to
morph from one sound to another. The Dog howl GA settings show how to set this up. I
made GA files8 from the Dog Howl h and Cat h spectra (this creates objects called dog
howl GA and cat GA), and entered the cat GA file in the Analysis 1 field of dog howl
GA. Entering !Modulation into the Morph field gives control of the timbre to the MIDI
mod wheel. When the wheel is at 0 we hear the dog, when the wheel is up full we hear
the cat, in between it's something like both. The morph is really a crossfade between the

8 Tools:GA Analysis From Spectrum.

Kyma 17

envelopes and waveforms used for resynthesis, so you never hear a mix of a cat and a
dog.

GA oscillators provide many of the rich sounds found in the analog examples. A GA saw
is more effective than a simple sawtooth (such as phasor in MSP) because it does not
have to be filtered to prevent aliasing. The GA PNO SAW prototype is a good example.

RE Resynthesis
Resonator- Excitation synthesis is another interesting method for deriving sounds. The
RE analysis tool creates two files, assuming the sound is modeled on an excitation signal
(like a violin string) and a resonating filter (like a violin body). The RE file describes the
filter and how it changes over time, the ex file is the excitation. An REResonator puts
them back together. Of course the first thing we want to do is try the filter with different
input signals.

The Cross synthesis RE Filter prototype does this:

Kyma 18

This should start to look familiar by now-- the wavetable parameter contains the analysis
file, and there's a time index to control the sweep through the filter stages. But there's a
lot of extra stuff. This is to deal with the possibility that the excitation file and the filter
are not compatible, and might produce (very!9) nasty sounds when you try the
combination.

First, since these are resonant filters, the excitation signal is typically very low level.
Anything you have recorded is guaranteed to be too strong. The attenuator on the sound
file is usually set at 0.05 and given an !input slider to reduce it further. The filters
further modify the sound to provide even spectral content for the filters to work on.

The final sound is a dynamic range controller set up for extreme compression. This is a
safety net that kicks in only if something goes wrong. Within this framework, it's
interesting to substitute different analysis files in the RE filter and different input sources.
With speech based analysis files this will sound a lot like vocoding.

What is Vocoding? It comes from a telephone process known as "vocal encoding", a
technique for reducing the data content of an audio signal. The original signal is analyzed
by a set of tuned filters-- the amplitude of the audio output at each filter is used to control
the level at a similar filter at the other end. The input to the receiver end filter bank is
some kind of excitation signal, probably noise. It didn't work well for telephones, but as
Wendy Carlos demonstrated in "Clockwork Orange", you can get some interesting effects

9 Remember my story about the Morpheus blowing speakers during beta test? This is the
same problem.

Kyma 19

by mixing analysis and excitation signals. A typical analog vocoder of the '70s had 12
bands.

Vocoder
Of course if you want vocoding, there are sounds especially designed for that. The
vocoder comes in two basic styles. In the scale vocoder, the filters are tuned as octaves of
a frequency series you specify. In the tunable vocoder, the filters are at evenly spaced
frequencies, but interestingly, the frequencies and spacing don't have to be the same for
the analysis and synthesis banks.

The advantage of the vocoder over the RE filter is that the vocoder doesn't need a pre
cooked analysis file. You can just sing into it.

Pitch Shifting

Grains
Kyma has several approaches to pitch shifting of live signals. The simplest is
SimplePitchShifter (Frequency and Time Scaling). All it needs is a signal input,
specifications for the minimum and maximum fundamental frequency that will be input
and a hot parameter that gives the interval (in semitones) to shift. The shift can easily be
controlled by a keyboard, and a MIDIVoice can be added to give chords.

How does this work? The Input signal is chopped up into very short segments, a process
known as granulation. In fact, two streams of grains10 are created, that overlap in time
much like bricks in a wall. (The grains start and stop with fades). When played at the
output, the spacing between grains is adjusted (which changes the duration of the sounds)
and then a complimentary sample rate change is applied that restores the duration and
changes the pitch.

The FrequencyScale object is a somewhat older object that gives access to all of the
parameters involved with the process. It also includes an input for tracking frequency,
which allows a cleaner shift under some circumstances. In both of these sounds the
granular approach becomes obvious with extreme shifts.

The granular approach has applications beyond pitch shifting. Granular synthesis was a
fairly popular technique back in the days of lo-fi computer music11. The Roads text has a
long discussion of it, and you can explore some of the possibilities with the SampleCloud
sound. This takes a sample and granulates it, playing the grains in a random order. I'd try
it by loading in the violin sample loop. If you set the sliders (except amp) near the
bottom, and very slowly bring each up and back down, you will hear how this works.

10 Also known as wavelets.
11 By which I mean music made with relatively primitive computers in the 60s and 70s.
Much of that music is in fact very beautiful.

Kyma 20

You can get various granulation effects on live input by using the memory writer sound
and setting SampleCloud to read from the memory writer. MemoryWriter transfers audio
into a buffer that other sounds can access. The Granulate prototype shows how to set this
up.

Try adding a harmonic resonator to this patch.

Pitch Shift by Resynthesis
You can get a better quality of sound from pitch shifting by resynthesis. Open
PolyphonicPitchShiftResynth.

This is similar to the oscillator bank patch above, but the spectrum to control the
oscillator bank comes from a sound called LiveSpectralAnalysis. This creates spectrum
control signals on the fly. There are several parameters to set that adjust to the type of
sound, and the pitch you will ultimately get is determined by what is in the FreqScale
parameter12. For keyboard control, enter !KeyNumber nn/ 60 nn hz.

With Live Spectrum Analysis as an input, you can create other effects, such as time
stretching and spectral discombobulation.

Control
The VCS contains controls defined by unrecognized !events. The look of these can be
edited if you click on the lock icon next to the sound name.

Labels

Number fields

Controls

Grab Preset Current Preset Randomize Ac tive Sound Edit LockMIDI control

Pen Control

12 In the prototype for this sound, the Oscillator bank is set for 256 oscillators. That
probably sounds beautiful, but it's too rich for our blood, and won't work. It sounds fine
if you cut the number of oscillators down to 100.

Kyma 21

The Virtual Control Surface Editor will appear, and let you set various aspects of each
control (widget). When you relock the VCS, you will get a save dialog, and changes
become part of the sound.

You can connect MIDI controls to the widgets in the VCS.
1. Select the widget (in edit mode).
2. Hit the escape key.
3. Move the MIDI controller.

The message type will be detected and assigned to that widget.

Kyma 22

MIDI control of Sounds
Mostly you will control the Capybara directly via MIDI. The simple MIDI messages
!Pitch, !KeyNumber, !KeyVelocity, !KeyDown, and !cc0n13 will handle most situations.
You can assign MIDI controls directly to parameter fields with the escape key trick14.

The channel assignment is found in the MIDIVoice (note that channel 0 means the
default channel). It's perfectly reasonable to have Finale play the Capybara by patching
MIDI from the computer out to the Capybara in.

More exotic messages are found in the global map. In most cases what you see won't
make a lot of sense, such as
!KeyNumber is `MIDIKeyNumber
That just means some SmallTalk code called `MIDIKeyNumber is supplying the data
here. Looking in the global map may give you some ideas and solve some problems, but
please don't change the global map. You can introduce custom controls for your own
sounds in MIDImappers.

A MIDIMapper works just like the MIDIVoice. You put it at the right end of your sound,
and it makes the sound polyphonic. The difference between this and MIDIVoice is you
can rename the midi inputs and add custom controls to the VCS. For instance the entry in
the Map field

!backPitch is: (127 - ` MIDIKeyNumber) nn

will give you an event that (if entered into a pitch field) responds backwards to the
keyboard.

MIDI Files
An interesting feature of both the MIDIVoice and MIDIMapper is they can follow a
standard MIDI file. Simplly enter the name of the file in the MidiFile field and set the
source switch to MIDIFile. You can also enter a script written in SmallTalk to play
something algorithmic.

Sequencer
The analog sequencer isn't an analog sequencer really, it just tries to behave like one. It
goes at the right end of the sound, just like MIDIvoice. It is not polyphonic, except in a
minor way -- voices that have a long release in an ADSR will overlap if the sequencer
polyphony is set to 2.

The sequencing part works like this: certain fields can contain a series of statements
written within curly braces:

13 !cc17 means controller 17.
14 Hit one, two or three keys to get !keyPitch, !keyDown, or !keyVelocity

Kyma 23

{something}{something}{something}
When the sequencer starts, the first statement in each field is evaluated for that parameter.
When the sequencer steps, the next statement in each field is evaluated. If a field runs out
of statements, the last one is repeated. When the field with the most statements is done,
the whole process starts over.

You can easily run out of space in the field when typing expressions like this. Double
clicking in the space between the parameter fields will use the whole window to display
parameters, or Command-L will open the large editing window, which has plenty of
room15.

This sound illustrates a sequence. The durations field is the time on each step, in seconds
if not otherwise noted. These values are divided by whatever is in the Rate field to give
the actual duration. Since there's only one item, all steps are the same.

The DutyCycles field provides a !KeyDown message to the ADSR. Again , all are the
same, giving 90% of the duration.

15 You can resize the window by dragging the lower right corner.

Kyma 24

In Pitches, I've included a bunch of sliders called !P01, !P02, !P03, !P0416. These will
show in the VCS and let me play the pitches. The MIDI key number also changes the
pitch heard. This field provides !KeyNumber events to the upstream sounds, and I can
intercept the input KeyNumber and modify it.

The velocities field generates !Keyvelocity messages. The sw01 etc let me turn sections
on with switches. I can replace this statement with:

{1 * !KeyVelocity}17

to make it responsive to the keyboard.

The extra values field is a bit different -- here you specify an event message to be sent up
the patch, along with a series of values for the event message to take.
In this example, !Pan willmove from 0 to 1 and back in eight steps. Notice that the syntax
is different:

#(!Pan 0 0.25 0.5 0.75 1 0.75 0.5 0.25)
This looks suspiciously like a Lisp statement, but it's SmallTalk's way of specifying an
array. You can have more than one of these in the field.

The gate field specifies what makes the sequence start. If you enter !KeyDown in this
field and uncheck loop, the sequence will run once per keystroke. A 1 (with loop
checked) makes it run continuously.

The Step field specifies what makes the sequence step. If there's a 1 here, the durations
take control. If there's a !KeyDown, you can play the sequence, but no faster than the
durations will allow.

Start Index and end Index set the length of the sequence. Note that the first step is 0, so
an end index of 4 means a 5 step sequence. The sequence can't be any longer than the
number of items in the longest field though. These are hot parameters, so you could have
a control called !End * 4 to adjust the sequence length.

Loop and retrograde do what you would expect. It's a pity you can't put a control here.

16 I use 02 instead of 2 because the sliders are sorted alphabetically in the VCS. This
way, if I get up to 10, it won't appear between 1 and 2.
17 You can't just say !KeyVelocity here without getting an error warning. Key velocity is
a message that must be sent to an object. 1 is an object in Smalltalk.

Kyma 25

Timelines

Play cursor controls

Time units

Channel for marker control

Time Units detail Snap mode Alignment

Start, Anchor, Duration, End

Automation parameters

Handles

Status of selected parameter

Parameter control source

About selected handle

Process control functions

Control Function

Sounds

Set markers

Marker info

The timeline is a sequencer of sorts. It's not sequencing notes or audio files though- what
its doing is reconfiguring the Capybara the same way as happens when you compile and
load a new sound. So if your timeline has basic beep for 15 seconds followed by shortseq,
the basic beep will quit and the shortseq will start at the 15 second point. With four
tracks, you can overlap four sounds, which is probably enough. To add more tracks,
select a sound in the last track, and down arrow.

To get a sound into a track18, just drag it where you want it. Drag on the ends to adjust the
length, or type in the boxes above the tracks. These boxes aren't labeled, but represent:
9. Start time
10. Anchor time -- the place to line up the anchor point in a sound. Usually the same as

the start time.
11. Duration
12. End time
Editing one of these changes various others.

18 You can drag an audio file directly into the timeline from the sound browser. It'll wind
up in a generic source.

Kyma 26

A sound in a time line is just like a sound in a sounds file. It is an instance of the
prototype it was derived from, and you can open it to edit the patch or parameters.

The left side of the track looks like this.

• Click to the left of the microphone to set an audio input
• Click on the MIDI plug to set midi channel.
• Click on the grid to send the signal to a submix (which is an audio input choice for

another track.)
• Click on the horn to solo the track. (Click again to play all.)
• Click on the pan knob at the right to set output to fixed channels (default is pan

between 1 and 2).

To play, click the play button or hit the space bar. Compiling will happen if required,
then the sound will play as laid out. The spacebar will pause and play again. Control
spacebar plays from the beginning. Clicking on the ruler will move the play cursor.

 These buttons jump to the next beginning or end of a sound.

 These buttons place markers in the timeline.

 This button places an anchor, which is a marker in the sound. (The anchor is
indicated by a blue line- it defaults to the start.)

 These buttons jump to markers or anchors.

Name Program number Time
Markers

Once you have markers, you can name them, adjust their time, and set program changes
that will move to them. This means you can select sounds just like on a normal
synthesizer. Place WaitUntil objects in an adjacent track to make the time line pause after
the Marker.

The bottom half of the timeline is dedicated to parameter control. Event parameters can
be under live control, getting their values from the VCS or MIDI, or automated.
Automation can be recorded and edited or entered from scratch. Control modes for each

Kyma 27

parameter are set by selecting it and clicking the drop-down menu near the bottom left of
the timeline.

To record controller moves
• Select the sound(s) you want to automate.
• Select the parameter in the list on the left side.
• Click the button in the lower left corner.

The Automation drop down menu lets you do this for all parameters or all master
controls, as well as cancel the operation.

When record enables are set, play the sound. Any changes you make will be recorded as a
take and will show up in the editing pane when the parameter is selected in the list on the
left:

The inflection points are marked with squares. You can move them around with the
mouse, (shift to constrain motion in time or value) or select them and edit the time and
value boxes just below this area.

Time ValueTransforms

To the right of the time and value boxes are a series of buttons. These apply transforms to
selected sections of the function line. Usually you have to specify a range of time and
value to work with by drawing a rectangle.

• Invert
• Repeat
• Reverse
• Randomize
• Square up
• Rescale

Kyma 28

• Offset
• Threshold (sets values below or above to 0 or 1).
• Time Stretch
• Fit to time
• Quantize time

These operations are reversible- just click the button to restore the original. If you click
yet again, a new transform is expected, but two clicks brings back the previous transform.

If you want to put data in by hand start by selecting Set selected sounds' live controls to
current values in the drop down automation menu. This gives you a fresh take with a
single line across it. Option or Control click on the line to get an inflection point.

Masters
A third option for a parameter is to be slaved to some other parameter. This is in the drop
down menu lower left. Parameters are usually slaved to other items in the same sound,
but you can create a master control to slave items from different sounds. Once you've
created a master, it will appear in the parameters and masters list (way at thee bottom)
where you can make it a live control that will show up in the VCS.

Unreal Time

Some sounds are too complex to play in real time and will throw up a warning19, or just
sound bad. If this happens, choose Record to Disk from the action menu. The sound will
be computed as a file on the hard drive which you can play back with DiskPlayer or
GenericSource. The Capybara will attempt to play the sound while it is doing this. No
matter how ugly the real time output is, the file on disk will be OK.

You can also speed processing up with DiskCache. This object can be dropped into a
complex patch at a point where the signal will be the same each time around (filtered
noise for example). DiskCache has two modes. It can be set to record whatever comes
through, then once that is saved, it can play the sample file it created. Playing a file is

19 Sometimes you get a warning, but it's OK anyway.

Kyma 29

usually easier than computing new audio. The Timeline has a slightly different caching
mechanism.

You can get a sense of how hard the Capybara is working by checking memory use in the
DSP status window.

The bars titled DSP usage show how hard each processor is working. Other tricks to
improve efficiency:

• Don't use a complex sound where a simple one will do. Oscillator is better at
reading wavetables than Sample, for instance. (The Get Info item will show
complexity as a percentage of what the Capybara can do.)

• Use expressions instead of sounds in parameter control inputs. The term
repeatingtriangle 2 s is better than an oscillator for LFO effects.

• If you must use a sound in an input, reduce the evaluation rate with the [sound] L:
4 syntax. (The number is update period in milliseconds.)

• Leave out redundant sounds. You hardly ever need an attenuator, for instance, and
sources should be mixed as early in the patch as possible.

• Multifunction sounds are more efficient than the equivalent in individual sounds.
• Reduce polyphony or banksize.
• Reducew the sample rate. (It's a preference. Put it back when you are done!)
• If the DSP usage shows nothing happening on processor 1, investigate the

ForcedProcessorAssignment sound.
• A donation to the studio of $647.50 will buy an additional expansion card with

two processors.

Compiling Sounds
Sometimes we just want the sound to start sooner, without all of the whirring and
transfers that come first. Investigate:

• The WaitUntil sound
• Compile and load from the action menu. (Space to play)

Kyma 30

• Compile to Disk on the same menu.
• Compiled sound grids (manual p 305)

More about the Parameters of a Sound
A sound will have all of the parameters of the sounds that make it up. These parameters
will initially be copied from the original sounds. They are edited by double clicking the
sound in the diagram (unfolding as necessary to see the component objects). The lower
half of the edit window will change to show the parameters and settings of the chosen
sound. (The sound you are editing will be gray in the signal diagram.) If the lower part of
the window is hard to read, double clicking between fields will enlarge it. (Double click
again to show the patch.)

There are three types of parameter:
• constants, which are consulted only once as the sound starts up,
• file names which point to any files used by the sound,
• hot parameters, which can change during the course of the sound.

The easy way to enter file names is to click on the disk shaped button by the parameter
field. This will bring up the standard dialog and you can find the file you want. If there is
no file name, or a bogus one, you will be prompted for a file when the sound is played.

Constants are generally a single number. If the number represents a time or frequency or
pitch, you have to specify the units. Legal units are listed on page 369 of the manual.
13. On = 2 years
14. Days
15. h = hours
16. m = minutes
17. s = seconds
18. ms = milliseconds
19. us = microseconds
20. samp = samples at the going rate
21. beats = beats at current MM
22. SMPTE = time in hours:minutes:seconds.frames format. Note the period before

frame number.
23. hz
24. nn = midi note number
25. c = the note c- must be preceded by octave number (4 c = middle c)
26. c sharp-- likewise
27. c flat -- likewise
28. do -- c for solfege fans
29. default = use data from file
30. removeUnits -- takes the units out

 If you forget the units, or leave them in when not wanted, you will get an error message
that only the inventors of Kyma can understand.

Kyma 31

 Fields that take a file name are easy to manage. Just click the button and browse to
the file location.
If you control, command or option click, the file already listed will open in an editor.
The file is actually opened when the sound is compiled. If the full pathname is not given,
the frequently used folders (set in preferences) will be searched first, then the Kyma
folder. If the file is not found there. a browser window will open.

Hot parameters20 can change during the course of the sound. These changes are based
on some kind of input, either user input from a control or MIDI, or the signal from a
sound. Inputs from controls (and a few other things) are indicated with event values,
which is some word starting with an exclamation point such as !KeyPitch. Event value
names are displayed in red. There is a long list of predefined event values, and a simple
way to make your own. Most are displayed on the Virtual Control Surface as the sound
plays.

Inputs from sounds will be the name of the sound in a box, followed by a letter (usually
L) telling which channel to use. To make this connection, select the source sound in the
patch diagram and copy it to the clipboard (cmd-C). Then past it (cmd-V) into the
parameter field.

SmallTalk Syntax
You will need to enter many hot parameters as simple math expressions. For instance, the
event value !Fader1 produces values from 0.0 to 1.0. To use this to sweep a frequency
from 100 to 1000 hz, you need to enter an expression like this:

!fader1 * 900 hz + 100 hz
This is a Smalltalk statement. It looks a lot like ordinary math, and you won’t get into too
much trouble if you assume that, but it’s worth learning what’s really going on.

A line of SmallTalk code is considered to be a series of messages that are sent to
receivers. When a receiver gets a message it returns an object that will be the receiver of
the next message. This all makes sense when you use the SmallTalk definition of a
number as an object21 that has a certain value and understands all of the math operations.
 The receiver is the leftmost item in the line, and the next item is the message. For
instance the line:

4 sqrt
means the message sqrt is sent to the object 4. The object 4 replaces itself with the object
2 which will be the receiver for any following messages. Sqrt is an example of a unary

20 Hot parameter field names are italicized.
21 This is actually a hugely useful idea. A number that knows it’s a date or a MIDI note
number can do something appropriate to its meaning when it receives a particular
message.

Kyma 32

message, meaning the message by itself gives the receiver enough information to do what
is wanted.

Many messages have an argument22, which follows the message on the line. In:

4 + 8
The message is ‘+’ with an argument of 8. This statement returns an object with the value
12, which will be the receiver of any message to the right. This rather unusual way of
looking at things becomes important when you combine messages. For instance;

2 + 3 * 4
works out to 2023, not 14. The normal math operators are called binary messages.

More complicated operations are performed by keyword messages. A keyword always
ends in a colon and takes an argument:

10 raisedTo: 2
returns 100. Notice that there is no space before the colon, and the odd capitalization.
Some keywords are actually two or three words, each with its own colon and argument.

Precedence
If there are multiple messages on a line, they are mostly processed from left to right but:

• Unary messages are processed first
• Then binary messages
• Then keyword messages.

Unless there are parentheses. Anything in parentheses is evaluated (following the rules of
precedence (including processing internal parentheses)) and the result is used in the outer
message. I’ve found that the easiest way to get predictable results from Kyma is to use
lots of parentheses.

So now the statement:

!fader1 * 900 hz + 100 hz
can be interpreted this way: the two hz messages are unary so they are executed before
anything else, setting the units of the object 900 and the object 100 to be hz. (The
oscillator understands what to do with a number object with a unit of hz or nn or s, or
even note names!) The current value of !fader is multiplied by 900 hz, and 100 hz is
added to the result. If this is written in a hot parameter field, it will be evaluated any time
fader1 changes.

22 Argument is math talk for “something else you need to know.”
23 It parses like this: ((2 + 3) * 4)

Kyma 33

Errors
If you get something wrong in a parameter field, Kyma won’t let you go any farther until
you get it right. There are three ways Kyma breaks the bad news:

31. A Window stating “The message #+ your Thing sent to the object SomethingOrOther
was not understood” means the message you were trying is not implemented for the
object it wound up at. You may have a typo in the name of a keyword, or maybe
Kyma just won’t do this.

32. If comments like “Missing argument or no leading zero ->” get stuffed into the
middle of your statement, there’s some trivial mistake in number of arguments or
punctuation. Hit cmd-L to expand the field big enough to see the entire message and
your code. Delete the error message and try again.

33. The comment “Nothing else expected” may happen when you add a line to a field
that already has a series of statements. To fix this, add a period at the end of the line
before the one you typed in.

34. If the field just flashes black when you try to play the sound, there’s probably an out
of range result. The ranges for each parameter are given in the info window for the
sound. Of course Kyma won’t let you see this window as long as there’s an error in a
parameter field…

Variables
A variable gives the you the opportunity to enter a value when the sound is played. You
can use variables in any parameter field—when the sound plays, you are prompted for a
value. (If you are playing from a sound file window, you have to enter a value each time
you play. If you are playing from the sound editor, the value you enter is remembered,
unless you choose Reset Environment from the Info menu.)

A variable has the form ?something. The first character in the name is a question mark,
and the second must be a letter.

There are also Variable Sounds, which allows swapping components of a sound at the
last minute. See page 281 in the manual.

Event Values
An event value can be added as easily as typing !something in a hot parameter. This will
get you a control in the virtual control surface titled !something. If !something is defined
in the global map, it will be connected to some sort of MIDI input and have a defined
control. If it isn’t, you will get a fader with the range 0 to 1.0

If you want to display your event value in another way, it needs to be declared in a
MIDIMapper sound. Put the MIDIMapper at the right end of the sound. (If you aren’t
building a MIDI voice, set polyphony at 1.) In the Map parameter field, you can define
your controls. The syntax is like this:

!something is: `something.

Kyma 34

This just gives you the default fader. More likely you want:

!something is: `somethingElse
This connects your fader to somethingElse which is defined in the Kyma system.
Generally this means MIDI input—you can find what MIDI inputs are defined by
searching the global map. While you are there, note the !event that is already associated
with the input—these are already active, but you can change the name and range in your
MIDImapper.

All lines in the MIDImapper Map field except the last must end in periods.24

Different Controls
To make something besides a fader, use the displayAs: keyword. It is applied to the
source of the data like this:

!myControl is: (`myControl displayAs: #smallfader)
Note the parentheses. The choices for display are

#fader
#smallFader a number box (cmd-drag to change)
#rotary a knob that goes all the way around.
#pot a knob that can't point straight down
#toggle a check box
#gate a button
#nothing doesn’t show up in the VCS

You can also affect the behavior of controls. To change the range of output from the
default 0 to 1, use the min: max: keyword.25

! myControl is: ((`myControl displayAs: #fader) min: 0 max: 100)
This can also legally be written as:

! myControl is: (`myControl displayAs: #fader; min: 0 max: 100)
When several keyword messages are sent to the same receiver, they are separated by
semicolons.

To set a step size as well as min and max values, write26:

! myControl is: ((`myControl displayAs: #fader) min: 0 max: 100 grid: 1)
To get a logarithmic control suitable for volumes use

24 The actual SmallTalk rule is all statements in a block must be separated by periods.
25 SmallTalk keywords sometimes come in pairs.
26 When you are fooling with control definitions, it may be hard to get changes to take
effect.. This seems to be a bug in Kyma. The trick is to change the name of the control
when you modify it.

Kyma 35

! myControl is: ((`myControl displayAs: #fader) taper: #log)

You can define event values as combinations of things, like

!KeyPitch12 is: (`MIDIKeyNumber + (12 * (`MIDIPitchBend displayAs:
#nothing))) nn

These are easier to edit right in the VCS. To open it, click on the padlock upper right.
Click on a control to edit its attributes, move it around, and resize it. Avoid the arrange
button. When done, close the editor window and keep your changes.

Defined Events
The global map27 contains predefined event names, most of them connected to MIDI
sources. Probably the most commonly used will be:

Name Meaning Range

!KeyNumber MIDI note number 0 to 127
!PitchBend MIDI pitch bend -1 to 1
!KeyPitch Number + bend Note numbers +/- 0.5
!KeyPitch12 Number + bend Note number +/- 12
!Keydown Trigger 0 then –1 then 1 (hold), 0

!KeyDownLegato Detects any key 0 only when all keys are
up, otherwise down

!KeyVelocity Velocity 0 to 1
!ChannelPressure Aftertouch 0 to 1
!ProgramNumber Program change 1 to 128
!cc00
to
!cc127

Controller 0 to 127 0 to 1

!Fader1
to
!Fader16

Controller 11 to 2628 0 to 1

!Modulation Controller 1 0 to 1
!Volume Controller 7 0 to 1
!Damper Controller 64 (sustain

pedal)
0 to 1

!Random Random number on each
evaluation. The random
keyword may be more
useful. See p. 52

0 to 1

!sw01 Check boxes linked to
controllers 31 to 42

0 or 1

27 You can read it - it's called KymaGlobal.map.
28 These controllers are also defined with some names that fit examples, but may be
confusing in your sounds. For instance !Pan is controller 22.

Kyma 36

to
!sw12

controllers 31 to 42

!sw13
to
!sw127

Check boxes not linked
to anything

0 or 1

!tr01
to !tr127

Even more check boxes 0 or 1

Accurate typing is important. !KeyNimber will just get you fader called !KeyNimber.
Once you type ! the program will start guessing what you want. You can also get a list of
defined events with with cmd-H. Pressing escape, then moving a MIDI control will
assign that control. (Escape then hitting a MIDI key gets you !KeyPitch , a chord of two
keys gives !KeyDown, three gives !KeyVelocity.)

Using Sounds As Controls
In many cases, a hot parameter should be controlled by the output of a sound. The classic
example of this is an envelope generator controlling the amplitude of something. (Kyma
doesn’t have any VCAs per se. Instead, nearly every sound has left and right amplitude
fields or scale fields. 1.0 is full level.) As mentioned above, you connect a sound to a
parameter field by copying the sound with command-C and pasting it into the field. It
will appear in a box, followed by the letter L. The letter indicates which channel of the
sound to use, L for left, R for right, M for mix.

Hot parameter fields are recomputed at a 1000hz rate. Event values change when you
change them, so many of these calculations will result in the same answer. To save on
unnecessary calculations, the Capybara29 will only do the math when the event values
change. When sounds are used in parameter fields, a value is grabbed once per
millisecond, which could be faster than you really need. To slow down the sound
processing, specify a sample period like this

[sound] L: 4
That will give a control sampling rate of 250 hz.

If you have a sound that you want to apply to several parameter fields in many sounds, it
may be convenient to convert it to an Event Value with a SoundToEvent sound. This is
particularly useful when you need to edit the math used in the conversion- you only have
to do it once.

Likewise, if you want to process an Event Value with sounds (delay, for instance) you
can use the Constant sound.

29 Remember, Kyma sends instructions, but the capybara does the work.

Kyma 37

Keywords For Controls
Kyma has a number of keywords and unary messages that are specialized for modifying
event values and control sounds. For instance, units such as nn are really unary operators
that define the meaning of number objects, but do the necessary conversions this:

60 nn hz
will give 261.625630 as a result. You can try this sort of thing out yourself: type the
statement into a parameter field, highlight the statement and hit cmd-Y.

Smooth
Sometimes changing controls gives rough sounding results. !cc07 in an amplitude field
will produce “zipper” noise if the fader is moved too fast. The entry below will fill in
between the steps:

!cc07 smoothed
smooth will take 100 ms to make the complete change. To change faster or slower, use;

!cc07 smooth: 10 ms
with an appropriate time argument.

Ramp
There are other keywords that involve time. These instruct their receiver to consult a
periodic function in a wavetable to find a value. Ramp is an example:

1 ramp
will generate a ramp from 0 to 1.0 over 1 second. To make it repeat, use:

!KeyDown ramp
It will now occur on each key down.
!KeyDown ramp: 2 s
Lets you specify the period of the ramp. Variations on ramp are

Name Meaning Range

ramp 0 to 1 in 1 second 0 to 1
ramp: Specify seconds 0 to 1
fullramp 1 second period -1 to 1
fullramp: Adjustable period -1 to 1
repeatingRamp Continues its cycle at 1

second
0 to 1

RepeatingFullRamp: Continues its cycle with
adjustable period

-1 to 1

30 Actually, it gives 261.6256d the d at the end means this is a double precision
number. Kyma knows many number types – 16rF7 is a hexadecimal, for instance.

Kyma 38

bpm: Repeating trigger at
specified rate. Its value is
1 half the time and 0 half
the time.

0 or 1

bpm: dutycycle: Repeating trigger at
specified rate and
fraction of time

0 or 1

Note that bpm is a keyword and has to have a receiver like

1 bpm: 120
You sometimes see !Bpm as an event value, which means someone has defined it and has
an expression like

1 bpm: !Bpm
in a parameter field.

Other time functions depend on the Capybara’s scheduling clock. This is the system that
keeps track of elapsed time and triggers events. There are two forms of time that are
available as event values:

!RealTime is the time in seconds since the start of the sound.

!Time or !LocalTime starts with your sound, but can be paused by TimeStopper and
varied by TimeControl and TimeOffset. These rather peculiar sounds affect the timing of
sounds that are connected to their input.

!TimeCode is MIDI or SMPTE time. There is a keyword that can make something
happen at a certain time:

00:00:36.00 triggerAtTimeCode
This one will go on for a specified time:

00:00:36.00 gateOnAtTimeCodeForDuration: 14 s
You can use any kind of time specification

!TimingClock is the MIDI real time clock, which comes in at 24 per quarter note when
Cuebase or some other program is instructed to send it. This can be used in a coarse way
to step analog sequencers and some other sounds. !TimingClockDuration is more useful,
as it gives you the time between clocks and the expression

(!TimingClockDuration * 24) inverse
Will give you the duration of a quarter note.

Random
Random is a keyword that gives unpredictable values. For some reason it is implemented
by sending it to a number with time units like this:

Kyma 39

2 s random
This produces a new random number between –1 and 1 every two seconds. The keyword
nextRandom gives a new value each time it is triggered:

!keyDown nextRandom
produces a new number on each key press.

!Random is an event value that will give a new value between –1 and 1 every time it is
evaluated. !Random1000 gives a steady stream of random numbers at the fastest possible
evaluation rate. The random keywords are probably more useful.

