Messages and Structure

Messages and Structure in Max Patches

This essay addresses some of the larger issues of design in Max/MSP/Jitter. Most
tutorials cover specific problems and how to solve them— this essay examines the issues
involved from a distant perspective, and will discuss the structural elements required in
all patches without going into details of specific applications. I will also discuss features
often lacking in patches but essential to long term utility: these are robustness, and
maintainability.

Every Max patch consists of object boxes connected by lines. We will look first at what
the lines represent.

The Concept of Message

One essential difference between Max and other programming languages' is that all
action is based on the passing of messages. Most other languages have a list of
instructions that are executed in an endless loop. This means code is loaded and unloaded
even when there is nothing to do. If the program is well written, the looped code mostly
checks for the need for other code to run, but even this takes time. A worse problem is
that such programs work as a polling system, meaning that events in the outside world do
not affect the program until the loop gets around to looking for them.

What does it mean to pass a message? In the typical language, when a piece of code
finishes, any results are parked in memory (in locations called "variables") and sit there
until the program loop calls a routine that is interested in these results. In Max, the code
resides in objects. When an object produces a result, a new message containing the result
is passed to the next object in line. More importantly, the receiving object is activated
immediately to process the message. This means any event triggers a cascade of
calculations which for the most part execute at the computer's maximum speed. No
extraneous code is invoked, only routines relating to the message path are run.

The Content of Messages

The possibilities of Max are ultimately limited by the possible content of the messages.
One of the first things we need to learn in our mastery of Max is the types of message
available.

Bangs

As Chris Dobrian wrote in the very first Max tutorial, bang means "do it". There is no
new information in a bang, only an order to execute code. All objects respond to a bang
somehow; if nothing else, they repeat the last output. The obvious function of bang
messages is to control timing. There are a variety of objects that create bangs in
predictable rhythms, and we often use bangs to determine the order of operation within a
complex patch. Max has no concept of a rest— there is only time between bangs.

' Most other languages-- any language you are likely to study, anyway.

Peter Fleea 2/R/11 1

Messages and Structure

Numbers

There are two types of number in Max-- floating point numbers, which have a decimal
point, and integers, which do not. These are generally called ints” and floats. The
distinction is left over from the not so distant days of computing, when computation with
floating point numbers took about 1000 times as long as computation with integers. The
distinction is hardly necessary in modern processors, but is continued to provide
backwards compatibility’. Translation from one number type to the other is more or less
effortless, but when a float is converted to an integer the fractional part is lost. A more
subtle and often troublesome aspect of this is that some of the older Max objects take
their operational mode from the type of the arguments. If there is no decimal point in the
argument (or no argument), the math will be done with only integral precision. Thus 3 / 2
=1, whereas 3 /2.0 = 1.5. This type of problem is high on the list of most common
gotchas® in Max.

Numbers are currently represented by 32 bits’. This means they can represent
4,294,967,295 distinct values. An integer can represent values from -2,147,483,648 to
2,147,483,647. Floating point numbers range from 10°% to 10°* | but many numbers are
skipped within that range. Most of the numbers in the mid-range are available, but very
large ones are only approximated. Small numbers skip around in a peculiar way. Only
those that are some power of two can be represented exactly. This means that 0.2 is really
something like 0.20000001. Max will usually display that as 0.2, but eventually the
difference shows up.

rx-_
|

accum 0.

T

8.400001

Figure 1.

Jitter introduced a new number type known as char. This is actually the most ancient
number type, the unsigned 8 bit number or byte. The name char comes from a common
use of these to represent printable characters’. A char can represent 256 values, ranging
from O to 255. The utility of such a puny number may seem limited, but it's probably the
most common type. This is based on the nature of computer memory (and other

* Integers may also be called longs- this refers back to a distinction between 16 bit ints
and 32 bit longints. Floats are distinguished as float32 and "double" or float64.

? Not to mention old habits of thought.

* A gotcha is defined in Wikipedia as "an unexpected, or unintuitive, but documented,
behavior ins a computer system (as opposed to a bug)."

> Soon to be 64.

% In the days when computers only knew English.

Peter Fleea 2/R/11 2

Messages and Structure

hardware) which is usually built in modules of bytes. Thus a byte is used to represent the
intensity of a red pixel in a computer display. Chars only exist inside jitter matrices.
When a value is extracted by getcell, it becomes an int. In some situations, Jitter objects
actually convert chars into floats ranging from 0.0 to 1.0.

Symbols

When Max was originally invented, most programs used a string of chars to represent
text. Max does this at the deepest level, but the passing of long text strings is pretty
inefficient. Strings are represented in Max messages by symbols. Every time you enter a
new word into a patch, Max adds the word to a master list of symbols and assigns a
unique number to it. This number is passed in the message. Objects have access to the
symbol table and can reconstruct the original string if necessary. The advantage of this
approach is the speed with which symbols can be passed around. The downside is the
ever-growing symbol table, although with multi-gigabyte memories, it's a minor problem.
Since Max uses spaces to determine what characters to include in a symbol, you need to
type quotes around phrases that include spaces. We most often encounter this with file
names. Symbols make Max kind of awkward for writing poetry. If you need serious
manipulation of text, you should use spell and related objects to manage lists of numbers
that are interpreted as ASCII characters.

The fundamental use of symbols is to define messages. The bang message is literally the
symbol "bang", integers are prefaced with "int" and lists are prefaced with the word "list".
You seldom’ see these, as Max hides the standard message indicators. Other symbols,
such as "open" define messages for specific objects. If you send a symbol to an object
that has no code to respond to it, you will see an error in the Max window. Many symbols
are followed by one or more numbers, which are the arguments of the message.

Lists

A list is a single message containing several numbers and/or symbols. Originally, a list
was required to begin with a number, but that requirement has been relaxed somewhat in
recent years. A list that begins with a symbol is a message for most objects, but some will
accept anything without complaint. The length of lists is limited by most objects: 256 in
some cases, 2048 in others, endless in a few®. This has been a source of constant
complaints in the Max user community. Someone always seemed to need a list twice as
long as the current standard. Long lists are awkward to manipulate, and are essentially
replaced by Jitter matrices.

Objects without a defined list method will process the members as if they were received
in consecutive inlets. A common gotcha is to accidentally send a list to a math object.
This will (for instance) add the first two members, but it also leaves the internal operand
of the object set to the second member of the list.

7 They show up occasionally, including that particularly enigmatic symbol "symbol".
¥ It was 64 in the very beginning.

Peter Fleea 2/R/11 3

Messages and Structure

Signals

Signals are not really messages at all. The patch represented by the striped lines is
actually set up independently of all regular Max objects and runs continuously. You
could almost consider it a separate program. The most important concept to be aware of
is the signal vector size. Samples are handled in small batches called vectors. An MSP
object receives a vector and will deal with it in one uninterruptible process. The only time
an MSP object can interact with the regular Max world is in the space between vectors.
Thus small vectors will make audio patches more responsive. They also make audio
processing less efficient, and at some point the CPU will not be able to keep up and you
will hear alarming crackles and pops.

Any MSP object can interpret Max messages, using floats to set frequency and so forth,
but the only road back is through certain hybrid objects such as sah~ and number~. Note
that some of these objects need a bang to prompt output, others output periodically, as if
they had an internal source of bangs.

Matrices

Matrices are massive collections of data. Matrices are not actually passed around. The
matrix message produced by jitter objects is the name of a matrix for the following object
to operate on. Since this process often includes copying the entire matrix, it is important
to only send them when necessary. Any right or middle inlet will "remember" the last
matrix applied (just as regular objects do), so avoid routinely banging all matrices in your
patch.

Objects and Messages

Every object has a specific set of messages it can respond to. In some cases, Max will not
let you connect an inappropriate message type. For instance, you cannot connect a metro
to the right inlet of an add object. The main convention of patching is that the left inlet of
the object triggers output. Anything received in the other inlets can be processed
internally, but there should be nothing passed down the chain until the left inlet is
activated. There are of course exceptions such as pak, but the general rule is input in left
triggers output’.

Of course, the first message must originate somewhere. There are really only three types
of object that can start the chain of computations. These are user input objects, system
input objects, and scheduled objects.

User Input Objects

Users can interact directly with Max patches by manipulating certain objects with the
mouse. There are quite a few Ul objects, each with unique look and action. In most cases,
UI objects produce numbers as their output, but bangs and arbitrary messages are also
available. As far as the end user is concerned, good patch design consists of choosing
appropriate Ul objects and giving them informative labels and a rational layout.

? Since MSP objects run continuously, there is no left/right inlet distinction.

Peter Fleea 2/R/11 4

Messages and Structure

When the user manipulates some control, say a slider, messages are generated at fairly
even time intervals, which means the faster the mouse moves, the fewer messages are
generated. If a slider is moved from 0 to 127, many of the intermediate values will be
skipped. Keep this in mind if you are watching for specific values.

The initial value a UI object will output is somewhat unpredictable. It will display 0 when
the patch is opened, but no message of 0 is generated and following objects will be in
their default state. This leads to a common gotcha. A patch may work fine to start with,
but once closed, it will refuse to work again until every control has been operated. The
cure isl(a)l liberal use of loadbang and loadmess to initialize all UI objects to default

values .

System Input Objects

Several types of objects connect with the operating system and respond to data sent to the
computer. These include the various MIDI inputs, the key and text objects (for typed
input), serial, hi and udpreceive for input ports, and inputs for audio and video.

The MIDI objects have privileged status. If the overdrive preference is on, incoming
MIDI data will generate Max messages immediately, interrupting any other action that
may be going on. This privilege derives from the musical heritage of Max, but it is made
possible by the nature of the computer hardware. Usually this is unimportant, but if you
are building a graphic patch that uses MIDI for outside control, you may want to turn
overdrive off to get a consistent frame rate.

Audio and video inputs arrive periodically according to their format. For audio, the
controlling factor is the I/O vector size, which is generally larger than the signal vector
size. When an audio vector turns up, all other processing ceases until it is dealt with. The
I/O vector size affects latency. Smaller vectors are more responsive, but the practical
limit is established by the disc access rate. Video arrives in frames at a relatively leisurely
rate, but you will find input hardware differs significantly in the lag between real time
and Jitter input. Video frames are only grabbed when the appropriate jitter object is
banged.

Other types of input are polled periodically, often by bangs. The necessity for polling is
built into the hardware. It's generally a good idea to tweak the polling rate to match the
specific situation. If you poll too fast, you may get garbled data.

Scheduled Objects

Scheduled objects can create a message at a specified time. The archetypical scheduled
object is metro, which produces a bang when it is turned on, then at intervals of specified
milliseconds. There are two variants of metro. The normal object produces a bang that
interrupts all other computation. As with MIDI overdrive, this is designed to maintain
musical accuracy. The bang produced by gmetro is less pushy. It is held back (queued)

' This can also be managed with preset and pattr.

Peter Fleea 2/R/11 5

Messages and Structure

until all high priority activity has completed. If the computations triggered by a metro
take longer than the period of the metro (not uncommon with Jitter), new bangs will
continually interrupt the last one and the process will never finish. Max will lock up. The
only way out of this situation is to force quit Max, losing unsaved changes in your patch.
This is a major gotcha.

It is easy to forget that line is a scheduled object. Line has two associated time intervals:
the ramp time is the overall time to target, and the grain time is the interval between
outputs. The grain time should be set as long as possible while producing a smooth
output. There is no point in outputting duplicate numbers from a very slow ramp, or in
repeating a calculation more than once per video frame.

Message order in a Patch

I have already mentioned that execution of an object's code is triggered by the arrival of a
message in the left inlet. This implies that any other data required must have arrived in
the other inlets'' before the triggering message. Usually, the designer of an object will
have given this careful consideration when deciding which part of the computation
should be the trigger for output. In some cases, there are near duplicate objects— for
instance the / object and !/ objects both do division, but differ in whether the divisor or
dividend is the trigger. A simple guiding principle will work here: the data that changes
most often should trigger the action.

Right Outlets First

The default order of message passing helps data arrive in the proper order. It's another
simple rule: all objects with multiple outlets shall output data from right before left. Thus
notein with outlets for (left to right) note number, note velocity and channel will output
channel, then velocity, then note number. The calculations that depend on channel and
velocity can be made before the note number triggers the action. It is not a coincidence
that noteout has inlets that match the notein outlets in order.

notein

*
N
P p p =-- data processing

T 7
3 J|.2.LH <-- arrival order

noteout

Figure 2.

There are exceptions to the right to left outlet rule. The most common are with objects
that don't necessarily fire all outlets, such as select and route. But if two outlets do fire,
the right will be first.

" If an object has more than two inlets, the order in which data arrives in the non-left
inlets does not matter.

Peter Fleea 2/R/11 6

Messages and Structure

Right Destinations First

The second rule of message passing also enforces proper order. If two cords are
connected to the same outlet, the cord with the rightmost destination transmits its
message first. This includes all calculations that are triggered from that message. Thus
the messages that are derived from the source in figure 3a will arrive in the proper order
as indicated by the numbers'”.

F' source p source

fK

P P p

T /5 NENA:
“Ellﬁldf 2/ 11'5_1{5}4 sﬁ-

p destination p destination

—__.'U

Figure 3a Figure 3b.

This only works out if the lines do not cross. In figure 3b, an object has strayed too far
left with disastrous consequences. The parameters are set after the output has been
triggered. If this is a music application, everything is calculated one beat late.

You would be amazed how often message order gets scrambled in complex patches. We
can guarantee the order of message passing by using trigger objects as shown in figure 4.
The trigger object, which is usually abbreviated t, requires a token argument for each
outlet desired. The token determines the type of message to output from each: b for bang,
1 for int, f for float, s for symb0113, or 1 for list.

s0urce

P
I

le)s)s]s/2/"

p destination

Figure 4.

2 Of course when you encapsulate part of your patch like this, you are free to violate the
left triggers output rule. Do yourself a favor and follow the rule religiously.

" 1t will only pass a symbol, not create a new one. You can also specify a specific
symbol to send no matter what comes in.

Peter Fleea 2/R/11 7

Messages and Structure

Once triggers are in place, the patch will survive nearly any mangling. Inadvertently
moving an object and getting the messages out of order is a major gotcha. A good rule of
thumb: if an outlet has more than two cords attached, use a trigger.

In cases where the data arrival conflicts with the object design, we must artificially
trigger the calculations. For instance, we may wish to plot a circle by feeding a series of
angles to the poltocar object while keeping the radius constant. Unfortunately, poltocar
requires the radius in the left and angle in the right. Figure 5a shows one method of
dealing with this. When a new radius is entered, the value is passed to the first trigger and
is immediately output from the right outlet. The message uses this value to trigger the
poltocar object with an initial angle of 0.

0 Radius
0 Radius I
l thib
thi =
| "—\-.______
pgen_ 36 angles O
$10 pgen 36 angles Ibf
T t
s
thf == T
int ||
4 T
poltocar pIGIth:a -rx-
p plot_XY p plot_XY
Figure 5a. Figure 5b.

The subpatcher labeled gen 36 angles does what the label implies. A bang input triggers
a sequence of angles to sweep around a circle. The following trigger applies each to the
right inlet of poltocar, then bangs the left. A bang to poltocar will produce output with the
most recent data, which is the new angle and the original radius.

Not all objects will recalculate when banged. Figure 5b illustrates how the problem
would be addressed if poltocar did not. The radius message is stored in an int object and
repeated as needed'”.

Send and Receive

Send and receive pairs are used to transmit messages without a connecting patch cord. A
send may address as many receives as you like and a receive may be fed by an unlimited
number of sends. Send is usually abbreviated s and receive is abbreviated r. There are
many situations where they solve intractable problems, but I find them most useful in
clarifying timing. For instance, I have built many patches with the general structure
shown in figure 6.

' The int and float objects perform the function served by variables in text based
languages-- they provide a temporary place to store numbers.

Peter Fleea 2/R/11 K

Messages and Structure

L

gmetro BBT
I rdrawnow rdrawnow rdrawnow
tb b clear T T _ T I
T T p object p object2 p object
% I I I
s drawnow s toLCD s toLCD s toLCD
rtolLCD
L —

jit.lcd 4 char 320 240
Figure 6.

In figure 6, the driving object is the qmetro. This commands a trigger object to generate a
clear message and two bangs. The clear is applied to the jit.Icd, as is the second bang. All
drawing commands for jit.lcd must be issued in the interval between the clear and the
bang. The intervening bang is sent under the name drawnow to as many draw routines as
I like. The actual commands from the drawing routines are returned via the toLCD
receive object. No matter how complex this drawing becomes, the update order is correct,
because all consequences of the send drawnow are completed before the final bang is
emitted from the trigger object.

Figure 6 does not control which of the three object subpatchers will be executed first. The
order in which receive objects get a message from a common send is not predictable.
Even if a patch with several receive objects seems to behave in a consistent way, that
behavior may change when the patch is saved and reopened. If the order of actions
triggered by a send object is important, it must be explicitly defined— either by using
multiple sends or by a common receive and trigger for critical sections. Figure 7
illustrates.

L L]
gmetro 33 r drawsecond
I I
tbb
tb b bclear rIdrawﬁrSt T
p object1 p object2 p object3
1 e I T T
s drawsecond s drawfirst 5 tolLCD s tolLCD s tolLCD

rtoLCD

L—
jit.led 4 char 320 240

Figure 7.

Peter Fleea 2/R/11 9

Messages and Structure

You should use some care in the naming of send and receive pairs. The names should
describe the associated action in a fairly specific way. I use the construction send
to_something fairly often, even though it means the matching receive is grammatically
awkward. I use it when there are multiple sends for one receive. Likewise, a single send
from somewhere will usually match several receives. It's also a good idea to use unique
send and receive names in each patch. The habit of repeating send names is easy to get
into, especially when one patch is derived from another. This can cause problems when
more than one patch are open at the same time. I won't go so far as to recommend some
arbitrary and unwieldy naming scheme, but something derived from the patch name and
associated action should do. If the patcher of figure 7 were called lines, the name
linesDraw?2 might be appropriate for a send.

Scheduling and Deference

> >
L - L -
gmetro 33 metro 33
clear || p drawball clear | p drawball
jit.led 4 char 320 240 jit.led 4 char 320 240
L
Figure 8a Figure 8b

The patches shown in figure 8 illustrate a particularly perplexing feature of Max. I often
use patches like these to illustrate the right to left ordering phenomena discussed with
figure 3. By moving the clear message to the left or right I can instantly break or repair
the patch, an effect students usually find dramatic. Of course the proper and usual place
for the clear message is to the right of the drawball subpatch-- if it is between the
subpatch and the jit.lcd inlet, neither version works. Surprisingly, the leftmost location
works when the source of bangs is a qmetro, but not with a metro. The reason why gives
a peek into a realm of extremely knotty timing issues.

I have already mentioned that Max places a higher priority on some activities than others.
If overdrive is on, MIDI input and metro bangs can actually interrupt other things that are
going on. When it is off, computations in progress are allowed to finish before the MIDI
data is processed-- MIDI is deferred for a bit. The mechanism that manages this is called
the scheduler, and it obviously must maintain a list of things to do— this kind of list is
called a queue in computer-speak. MIDI is still pretty special when overdrive is off, so
MIDI and metro inspired actions may be deferred, but are placed at the head of the queue.

Peter Fleea 2/R/11 10

Messages and Structure

What goes on the end of the queue? User actions, screen updates', and anything to do
with gmetro. This explains figure 8. The drawing of jit.pwindow is always one of the last
things on the queue. The actual action of the redraw consists of looking for the matrix
that was most recently passed in (by name) and transferring that data to a buffer for the
operating system. The clear message resets the output matrix of jit.lcd to the background
color. When the clear message is connected to a metro, it will always execute before the
jit.pwindow update, so all jit.pwindow gets is a blank. When the clear message is
connected to qmetro, it takes its turn after the pwindow update.

The moral of all of this is that there is a definite pecking order to Max actions. In broad
terms, it goes like this:

* Audio processing interrupts everything.

* Midi and metro can interrupt most actions if overdrive is on.

* MIDI and metro actions go to the head of the queue if overdrive is off.

* User actions, screen updates and qmetro actions always go to the end of the
queue.

* File actions have an even lower priority.

Note that user action is a higher priority than screen redraws. If you change a number
box, all of the code connected to the number box will execute before the number in the
box changes visibly. If that code is time consuming, the number box (and everything else
that is visible) will freeze. If this is a problem, use a deferlow object to lower the priority
of this particular action. There is also a plain defer object that will move processes from
interrupt level to the head of the queue if overdrive is on. This may be useful if overdrive
is needed for some types of MIDI message such as notes, but not others, such as control
changes that interact with graphics.

The Structure of a Simple Patch

The rules of message passing help determine the basic layout of all Max patches. If
everything is visible in one window, you should see these tendencies:

* The instigator of actions should be in the upper left corner. This would be a metro
object, or notein or something similar.

* All output objects should be at the bottom of the page.

* Code that processes input will be at the left of page.

¢ Code that sets up processes (including most UI processing) will be toward the
right of the page.

Figure 9 illustrates these in a generic way. Note that I said tendencies, not absolutes. The
actual placement of things on a page is unimportant if you are using trigger objects, but if

' This is actually only a notification to the operating system that the program window
needs updating. The actual screen refresh rate is something between 30 and 120 times a
second, which is why there's no point in running Jitter routines too often.

Peter Fleea 2/R/11 11

Messages and Structure

you stay close to this layout the patch will be easy to read'® and maintain. It is not
necessary to hide all of the code in subpatchers. These may just represent groups of
objects that are closely associated.

p input or 0 0 W]
tirmin [I |
g 1 1 L

%

p setFaram1 p setParam2 setParam3

I

p action
-

L
p output

Figure 9.

The contents of the metaphorical subpatchers bear a strong similarity to the patch
overview. (Figure 10.) The input is at the left of the patch, with occasional actions and
initial setup toward the right. And yes, the similarity extends deeper, to the subpatches of
the subpatches. This means the basic structure of Max patching is fractal- any level you
look at will be similar to the level above.

ﬁ Input rglobal _data

p occasional updates

L L -
p adjustments r global_data hI:ladbang

p occasional updates p initialize

| —— J

p formatting

q To action param

Figure 10.

Approaches to Complex Patches

Of course the model of one input, one result, is only sufficient about half the time. Many
applications are more complex than that. As we encounter in most aspects of life,
complex patches are a combination of simple patches. The most common combinations

' T always say you should make your work understandable by a stranger. The stranger
most likely to look at your patches is you, in about six months.

Peter Fleea 2/R/11 17

Messages and Structure

involve doing something several times, or choosing and performing one of several
options.

Branching

There are many situations in which a decision must be made and action taken based on
that decision. The process is best illustrated by an old fashioned programming flowchart.
Figure 11 illustrates the "branch", a basic element which chooses alterative actions.

Compute A

Action 1 Action 2

Figure 11.

The first step to making a decision is to compute the basis for the decision. Next, a
comparison is made. If the comparison comes up true, some action is taken. If the
comparison comes up false, a different action is taken. Comparisons in Max are usually
based on numerical relationships:

117

== |equa
= | not equal

> greater than

>= | greater than or equal
< less than

<= | less than or equal.
Figure 12.

There are objects that perform each test, comparing the input to the stored operand. The
output of such objects is 1 if true and 0 if false. It is important to remember that
something is output every time there is an input message. If there is a series of false tests,
the result will constantly, show 0, which can lull the unwary into thinking nothing is
going on. Nonetheless, the output is a steady parade of Os. It is often a good idea to
follow the comparison with a change object to avoid repeated actions.

Comparison objects are sensitive to integer and float arguments. If there is no decimal
point in the argument, input is converted to integer form before the comparison is made.

' Yes, two equal signs. In programming, a single = usually means something else.

Peter Fleea 2/R/11 13

Messages and Structure

Thus 0.5 > 0 is false, whereas 0.5 > 0. is true. Another comparison gotcha is trying to
match a float number with ==. If the numbers are generated by user actions, the specific
match value may be skipped. You should always use <= or >= when comparing floats.

Select

The select (abbreviated sel) object uses == to perform comparisons. When the input is
equal to an argument, the outlet associated with the argument bangs. This is a very
efficient way to detect particular values out of a group of possibilities'®. Select can match
symbols as well as numbers. You often see select 1 attached to a comparison object to
trigger action when the comparison is true.

If

The if... then statement pair is the basic decision mechanism of most languages. Figure 18
shows the Max version.

9

i

if $i1 = 0 then §i1 else out2 $i1

| _—

p doPositive p_dDNegatiﬁ.re

Figure 13.

There is a comparison after the word if. If this comparison comes up true, the message
after the word then is output. If false, the message after the word else is output. Either
output can be steered to the right outlet by the word out2. Note that the only math in an if
statement is the comparison (which can be quite complex and involve different inlets).
No calculation is done in the output side of the statement, except the tokens $il, $i2
represent the input from different inlets. The i in $il converts input to an integer, $f1 will
calculate with a float.

Complex if conditions can include Boolean operations on the outcome of two of more
comparisons. (Use parentheses to group the operations.) The Boolean operators that are
useful here are AND and OR. AND returns true if both of its arguments are true. OR
returns true if either of its arguments are true. The operators are two ampersands (& &)
for AND or two pipes (||)for OR. If you forget and use just one, entirely different math
operations are performed.

18
Experienced programmers will recognize select as a case function.

Peter Fleea 2/R/11 14

Messages and Structure

Op inl |in2 | result
AND && | 0 0 0
1 0 0
0 1 0
1 1 1
OR || 0 0 0
1 0 1
0 1 1
1 1 1
Figure 14.
0 0

"—\.___‘_\-‘-\-
if (3i1 = 0) && ($i2 = 10) then bang else out2 bang

p doTrue ;EDFEI'SE

Figure 15.

Repetition
There are many situations where a single input must create multiple outputs. An example
is the angle generator of figure 5, which must produce a series of numbers. The simplest

way to supply a few values is with a divided message. Any of the buttons in figure 16
will produce five messages on the same scheduler tick.

T

628 471 314 157 0

, 1.57,3.14, 471,628 01.57 314 471 6.28

=

W L iter
p p T
P

Figure 16.

This trick is reliable and effective as long as the number of actions is small. The first
variant usually arises gradually, as the development of a patch reveals more iterations of
some process are needed. The message with commas is compact and easy to read. Iter is
most useful when the data coming in is changeable. When the number of repetitions is
large, or the output is based on calculation with several variables, we usually turn to uzi.

Peter Fleea 2/R/11 15

Messages and Structure

g

\\4
— 2l

1
1
1

J‘. p numerical_calculation
P

triggered_calculation

p completion

Figure 17.

Uzi is an engine that drives repetition."” The output of uzi consists of cycles— a number
from the right outlet followed by a bang from the left. The cycle is repeated as many
times as the argument specifies. When all cycles are complete, the center outlet bangs.
This violates the strict right to left rule, but no harm seems to come of it. Uzi runs as fast
as possible, but all calculations connected to the right outlet will complete before the left
outlet bangs.

The three outlets of uzi enable the most common applications of looped code.

Numerical calculations depend on the "index" which is the number of the current
iteration. For instance, to calculate 36 angles, the index would be multiplied by 0.17453.
The index numbers provided by uzi begin with 1 and include the number in the argument.
The majority of numerical series that are calculated from an index begin with 0, so the - 1
object on right output is usually required. This means the last value will be the argument
minus 1, but the argument still sets the number of calculations.

Triggered calculations don't depend on the index— an example might be producing 6
random numbers to add together for a Gaussian distribution. Of course, since the index
outlet and the bang outlet are synchronized, a fresh index is available on each bang.

The completion action is triggered by the center outlet. This is usually a notification of
the following sections of the patch that uzi has done its thing and operation may continue.

' Most programs use loops, and many programmers have trouble letting go of them. If
you are one of these, just think of uzi as an encapsulation of this code:

for(i=1; i <= n; ++i){

outletR(i);

outletL(bang);

}
outletM(bang);

Peter Fleea 2/R/11 16

Messages and Structure

Nesting uzis

I
uzi 240

— I
uzi 360 -1
- T Il

=1

l column row

p column_and_row

Figure 18.

We often need loops within loops. A common example is calculating values for a 2
dimensional matrix. We need to generate the column numbers for row 0, then for row 1
and so on. We do this with two uzis: one is sized for the number of rows, another for the
columns is triggered by the bangs outlet of the first.

There are some gothcas to be aware of when using uzi. One, which is rather rare, happens
when the index output of uzi triggers a deferred action. At the least, this will cause a loss
of synch between the indices and bangs, and in the most severe case will cause the
indices to be output in reverse.”’ The more common gotcha is simple overwork. If an uzi
is connected to an uzi, the total number of operations will be the product of the
arguments. There are many applications where this is a good idea, but it is easy to bog
Max down, even lock it up entirely. The patch in figure 18 generates 86,400 calculations.

Interrupting uzi

There are many situations where the loop end depends on more than one condition. This
may be the result of some calculations, or in response to an outside input.

—

pause

uzi 512
CD:I'I?EF -

sel 100
T~ |

100
Figure 19.

20 Remember, the defer mechanism puts the deferred action at the beginning of the queue.
If the index numbers from uzi each go to the head of the line, the last will be executed
first.

Peter Fleea 2/R/11 17

Messages and Structure

Figure 19 shows a mechanism for interrupting an uzi with a pause message. Once the uzi
has paused, it may be restarted with a bang or continue message. With a bang, it will start
from the beginning, output of 1, with continue, it will complete the interrupted series.

Slower Counting

[

L

metro SD-
-

-L-----

counter 50
50 sel 1

T |

Figure 20.

Sometimes we need repetitions at a slower rate. The patch of figure 20 will step from 0 to
50 (inclusive) at 30 ms intervals. Action is instigated by the toggle. When the counter hits
maximum, the select 1 object will bang and shut the toggle off. This mechanism can form
the core of any patch that needs to run for a specified time (the metro argument times the
counter argument) or a desired number of reps. I often combine this with an uzi for
nested loops that don't slow down the patch®.

The Gotchas of Feedback and Recursion

There are two common programming structures that don't work in Max. A feedback
patch exists when the result of a calculation is brought back up to the top of the patch to
use in the next iteration. This is fine, as long as the fed back value is never allowed to
trigger operation.

*! Lobject plug. I generally use Lcount here. It counts from 0 to one les than the
argument, so the argument indicates the number of times the event will happen. I also
directly outputs bangs, and will do parlor tricks like count by 2s or count up to 2PI.

Peter Fleea 2/R/11 1R

Messages and Structure

I
uzi 10 11

V

unpack

I

int 1

I

+ 1 clear, 1

z| stream 2

i

Zl group 10

12358132134 5589

Figure 21.
Figure 21 will calculate Fibonacci numbers in batches of ten. The mistake in figure 22
brings everything to a halt!

unpack

int/
1/ _

+1 clear, 1

Stack overflow.

Objects are probably connected in a loop. Choose Resume
from the Edit menu to restart the scheduler.

zl stream 2

T — -

zl group 10

Figure 22.

Note that the output of zl stream (the last two values calculated) is returned to an unpack,
which is connected to the left inlet of an int box. This will produce a race condition
where the output triggers output, which triggers output..... Max will usually detect this
and stop the scheduler until you can sort things out. In the cases where Max does not
detect this, it will lock up and you will have to force quit, losing any unsaved work.

The second big structural gotcha is recursion. It is perfectly legal in many languages for a

named function to call itself. This works because a function name just refers to a section
of code, which can be used recursively with different values as long as the ending

Peter Fleea 2/R/11 19

Messages and Structure

conditions are properly met. In Max, although it is good practice to type the name of a
saved patcher into an object in order to access the code, a patcher must never refer to its
own name. That is because Max loads each file contained in a patcher, along with all of
the files any subpatcher may refer to. If a patcher refers to itself, the loading process will
go on forever. This will hang up max and you will have to force quit. Worse, it can be
very difficult to recover your work in the contaminated patcher, because you can no
longer load it**. It is possible do this inadvertently by loading a patcher that refers to the
patcher you are working on.

The closest you can get to recursion is to encapsulate an operation, then copy that
encapsulation and build a string of them. It takes up a lot of space, but it works.

Modular Programming

Many of our projects are variations on similar procedures. For instance, when I was
investigating video feedback (see the Feedback Jitter tutorial), I built many patches with
feedback though a rota object with external control inputs. I built most of these as two
patchers-- a front end that generated matrices using one of a dozen techniques, and a back
end with the feedback processing and display. These were connected via send/receive
pairs. There was a master qmetro in the back end that broadcast bangs to receive objects
named "tick" in each front end. The front end patchers would respond to the tick by
generating an image for a send named "todisplay". Thus I cold do a set by loading in my
choice of front ends while the back end remained active on the screen. I eventually added
a third patcher to the setup. I controlled the performance with a variety of hardware
controllers, and it seemed I had a different one available for each show. The new window
would accept input from a particular controller and translate it to a defined set of
command messages such as fbk 1vl. Thus I could easily switch between a MotorMix
module, a microKorg, module, or a joystick module.

All of this is illustrated in figure 23. Each grey box represents a patcher. The feedback
and display patcher was loaded first and remained operational for the entire set. So was
one of the controllers, although it is possible to use two or more at a time.

*2 The only recourse is to open the file as text and edit the text, which requires detailed
knowledge of the text format.

Peter Fleea 2/R/11 20

Messages and Structure

Generagtors Controllers
r_ticks
Rorschach Joystick
| |
[s todisplay] |s controls |
Grab microKorg
]]
ls todisplay | ls controls |
[r todisplay | [r _controls |
r_ticks
. Feedback and
Movie Display MotorMix
| |
[s todisplay | [s controls]

S T1CKS S _C_state

Figure 23. A modular performance system
The generators are swapped for each section, or could all be loaded and enabled as
desired. In fact, the most recent version includes a four way mixing module.

The advantages of the modular approach should be obvious. It's easy to add new
generation schemes-- I have modules that do waveform display and lissajous generation,
animated motion, and fractal images. When I updated the feedback system to use jit.slab,
only one module needed to be changed. It's also easy to add new controllers-- an Arduino
based device fits right in.

The Robust Patch

The reliability of any computer program diminishes exponentially with its size. In other
words, if a patch is doubled in complexity, it is four times more likely to fail. When a
patch is functional, you are only half done. There is still a lot of work to do to make the
patch give long term, reliable service. The following sections describe the remaining
parts of the job.

Our patches usually begin looking like a colony of drunken spiders. I am no exception,
but I hope the patches that illustrate these tutorials give a different impression. I revise
my patches to improve readability, since the explanations will make no sense if readers
can't follow the patch. If a patch is difficult to understand, any attempt to extend it (or
repair it) in the future will likely break something instead.

Peter Fleea 2/R/11 21

Messages and Structure

Once you have a working patch, copy it, and clean up the copy. By "clean up" I mean:

* Ensure the patch flows from the top to the bottom of the window.
* Group related objects together.

* Move groups to proper right to left order.

* Remove dead end or redundant objects.

* Encapsulate related objects when that makes sense.

* Guarantee message order with trigger objects

* Replace very long cords with send and receive.

* Segment long cords so they never cross objects.

* Adjust cord crossings to clarify destinations.

* Color code cords that originate from popular sources.
* Comment everything.

At each step, test the copy and compare it with the working version. Moving objects
around very often breaks a patch.

Figure 24 and 25 illustrate the benefit of orderly patching. They are exactly the same, and
both have the same bug. The patch is an arpeggiator controlled by a k-slider in
polyphonic mode. Clicking on a key enters a note into the arpeggio, clicking it again will
remove it. The bug is in the velocity which somehow becomes attached to the wrong
note. If you click a strong C, then a quiet E, you hear the E but the C becomes quiet. If
you study figure 24, you will eventually spot the mistake, but I bet it is immediately
apparent in figure 25.

metru 25[]

\ga

next N _J_

coll == (0 then 1 else 2

makenute 127 SDD

T __H- '&. -
noteout

Figure 24. A messy, buggy patch.

Peter Fleea 2/R/11 27

Messages and Structure

X.ll

pack if $i1 ==0then 1else 2

—
rnetrn:n 250 gate 2
— T

next remove $1

coll
T
makenote 12? E-DD

[_—

noteout

Figure 25. Cleaning up the patch makes it easier to see the bug.

The list generated by the k-slider is stored according to note number, but the coll object
emits address before data- thus the pitch will be played by makenote before the velocity
arrives. The velocity of the previous note is used. The problem is easily fixed with a swap
object between the coll and makenote. Figure 26 shows the correction and comments that
will make the operation of the patch clear.

Click pitch to add note to arpeggio, click again to remove

R— l T]

Start pack if $i1 == 0then 1 else 2 Detect note off
I S
metro 250 gate 2

!______-‘- T
Step next remove $1 When velocity is 0 remove the note
through
notes in coll

coll i ——

swap Swap note number and velocity

I “—

makenote 127 ErEIEI

—)

Coll contains velocities stored at note addresses

L

noteout

Figure 26.

Peter Fleea 2/R/11 23

