Basic Drawing in Max.

Basic Drawing in Max

Max has had drawing features from the first commercial version, but these were
perfunctory until the advent of Jitter in 2003. Once Jitter appeared, artists became
interested, and we are starting to see some extraordinary work. Even so, drawing in Max
is primitive. The Illustrator pen, Photoshop plugins, and the transformations of Studio
Artist are all better at their function than anything available in Max. Art can be output as
QuickTime movies or JPEGs, but there is no direct to web connection. So what does Max
offer? Graphics in Max are computed at the frame rate according to your instructions, so
they can be dynamic, interactive and algorithmic. Further, the output of those other
applications can be brought into Max for real time transformations and augmentation.

The computation and patching necessary to produce 2D art are done with basic Max
objects. For a quick introduction to Max, see my essay "Max Intro". Then dive into the
tutorials found in the max help menu. Max was originally a music program, and the
tutorials reflect that fact. Nonetheless, the tutorials are the best way to learn Max, so start
with them right away. This essay will just show patches-- the tutorials show how to build
them.

Three vital pieces of Jitter

Jitter is the graphical face of Max. It is primarily designed as a video system, so there's a
fair amount to ignore for now (if you want to jump in at the video end of the pool, look at
my essay titled "Pre-Jitter Studies"). Jitter manipulates images at the pixel level, so some
understanding of how screen images are organized is required. If you look closely at a
screen or projection, you notice the image is made of dots. Each dot is controlled by
three numbers that set the intensity of Red, Green, Blue which combine to produce the
color you see. These are 8 bit numbers. Each has a range of 0 to 255, for a total of
16,581,375 possible colors. A typical screen is 1024 by 768, so there are 786,432 pixels,
at least. That's a total of 2,359,296 numbers blasted at the screen 60 times a second.
Special hardware in the display card (or chip) manages the brute force operations, but the
computer has to prepare these numbers so the CPU is working pretty hard too.

Jitter manages images in a data structure called a matrix, which is a collection of cells,
one per pixel. Each cell contains the values for R G B with a fourth value to control
opacity when images are combined. The forth value is called "alpha", and they are listed
in the order ARGB. (Most literature calls alpha "transparency", but an image with an
alpha of 0 is invisible.)

The matrix stores images

Image matrices are stored in an object called jit.matrix. (Every jitter specific object is jit
dot something.) jit.matrix objects can store other data too, so you have to specify image
data by giving the object the arguments 4 char. These are followed by two more
arguments for width and height of image. We'll start out with small images, as illustrated
in figure 1.

Peter Fleea 1/10/12 1

Basic Drawing in Max.

| Turn Metro On

gmetro 27.3 importmovie chilis.jpg Load the chilis image

matrix 4 char 320 240 Store the image and
= output it when banged,

ji

pwindow displays images
Figure 1.

Qmetro moves images

The qmetro’ object produces bangs at regular intervals. These bangs prompt the jit.matrix
to produce the image it is holding. The gmetro isn't strictly necessary here (one bang
would do) but I always use it to make updates automatic. The importmovie command
instructs jit.matrix to load an image file. You can load practically any type of image, not
just movies (you only see one frame of a movie.) If the image size does not match the
matrix size, jit.matrix will decimate or interpolate to fit the whole image in.

Figure 2. Chilis in a 32 by 24 matrix.

" Qmetro does exactly the same thing metro does. Qmetro is more polite about it. Max

will freeze up if you ask for too many operations between metro bangs, but qmetro will
slow down if too much is going on.

Peter Fleea 1/10/12 9

Basic Drawing in Max.

The pwindow Displays Images

. The Kitten icon in the object browser will expand to a jit.pwindow. This will

show the contents of a 2 dimensional matrix in a patcher. (To show an image in an
independent window, use jit.window.) You can resize a pwindow with the mouse, but it
is best to open the inspector and set the size exactly. The pwindow will interpolate any
matrix to fill the display space, so it should match the image size if possible. The
pwindow can do much more than show flat images. For instance, mouse actions can be
detected when the cursor is over the pwindow.

Basic Drawing

The drawing canvas is an object called jit.lcd. This is a descendent of a more primitive
drawing object called lcd. Led is still available?, but all it can do is show drawings in a
patcher. It does not produce matrices. The drawing routines in jit.lcd are based on the
original Macintosh graphic routines called QuickDraw.

The drawing space is made up of numbered pixels. Each pixel has two numbers, the first
is horizontal location, the second is vertical. The upper left corner is 0 0, and the pixels
across the topare 00,1 0,2 0,3 0,4 0, etc. The right edge is 00, 0 1, 0 2, and so forth.
This is similar to the familiar Cartesian coordinates except that y increases going down
the screen. Instead of X and Y, I'm going to call the points H V.

Technically speaking the point H V refers to the upper left corner of the pixel. Thus,
when you draw a line from 0 5 to 10 5, and another from 10 5 to 20 5, they will butt
against each other instead of overlapping. Some commands draw inside of lines, so you
occasionally find a 1 pixel difference on the right and bottom edges.

Drawing is done by commands with arguments that specify H and V. These commands
set the color of appropriate pixels. Drawing takes place within the jit.lcd, and is not
visible until a bang sends the image out for display or further processing. The commands
are cumulative until a clear command is received. If commands overlap, the most recent
is "on top". Commands exist to draw lines, arcs, rectangles, ovals (rectangles and ovals
may be either framed or filled), polygons, and clips from files.

Colors

Some of the commands can take colors as arguments. There are two ways to specify
color: indexed and rgb.

An rgb color is specified by three numbers, which set the intensity of the red, blue or
green component. Possible values for each color range from 0 to 255. 0 0 0 is black, 255

* Available, but not supported.

Peter Fleea 1/10/12 2

Basic Drawing in Max.

255 255 is white. 255 0 0 is a very intense red, and so on. Yellow is 255 255 0, magenta
is 255 0 255, and Cyan is 0 255 255. That's 16 million colors.

Indexed colors use a single number that refers to a set of predefined colors. The set
defined is rather strange, being permutations of the values 255, 204, 153, 102, 51, and 0.
The system creates groups of six that work progressively from pale green to red in sets
of 36 that move toward blue. That gets us up to 214. 215 to 224 are darkening shades of
red, 225 to 234 are shades of green, and 235 to 244 are blues. 245 to 255 are darkening
shades of gray.

00
36
72
108
144
180
216
252

Figure 3.

There is a color designated as the foreground color. This is used by any drawing
command that does not specify a color. It defaults to black, and will be changed by any
color drawing. Or, it can be explicitly set by the command frgb r g b. There is a color
designated as the background color with the command brgb r g b. You won't see it until
you issue a clear command. The default is white, but the initial contents of a fresh jit.lcd
are 0s, so the image will have a black background until a clear command is received.

The pen

Drawing is done at the location of an invisible pen. To put the pen somewhere, use the
command moveto H V. The similar command move H V' is relative to the last location.
Thus if the pen is at 15 44, move 5 5 will place it at 20 49.

Getpenloc will tell the position of the pen.

The pen starts out one pixel across. The command pensize H V changes it to a rectangle.
This affects line drawing and the various frame commands. If the shape is not square,
vertical and horizontal lines will be different widths.

Penmode sets the behavior of the pen in relation to what is already drawn. It determines
whether you get the foreground or background color, or something else. Some of these
functions use a third color called opcolor, which is set by the command oprgb.

Peter Fleea 1/10/12 4

Basic Drawing in Max.

The modes are called by number, but have names as shown in the help file.
The following table describes what happens with simple shapes, with the results of
drawing a pict shown in parentheses. The most common pen mode will be 0 or 4.

Penmodes

0 Copy You get the foreground

1 Or You get the foreground of the source and destination

2 Xor Black if over white space, white if over black (in colors, you get
compliments.)

4 Bic Background color (erases things)

5 NotCopy Background color (negative of colors of source)

6 NotOr Doesn't draw at all (negative of pict, destination shows through)

7 NotXor Doesn't draw (negative of pict, negative of destination)

8 NotBic Doesn't draw (source & destination where they overlap)

32 Blend Gives a translucent effect , based on opcolor.

33 AddPin Adds the source and destination -generally gives stronger colors. Uses

OpColor as maximum

34 AddOver Adds, but with "wraparound" which can be really bizarre.

35 SubPin Gives the difference, but opcolor is the minimum. Also strange

36 transparent Will ignore pixels in the source that match the current background. Use
this when drawing PICTs if you want the original to show through.

37 Addmax Will pass the maximum of the source and destination color, which
tends toward white.

38 SubOver Uses the difference between the colors, but if negative wraps around.

39 AdMin Uses the lesser of the colors.

Peter Fleea 1/10/12 5

Basic Drawing in Max.

Lines

The command /ineto H V draws a line from the pen location to H V.

The command /ine H V draws to a point H pixels right and V pixels down. H and V can
be negative numbers to go the other way.

linesegment hl vi h2 v2 ¢ draws a line from hl v1 to h2 v2 with indexed color c.
linesegment is really a moveto and a lineto.

frgb 0 0 0, moveto 20 20, line 280 0

frgb 255 0 0, moveto 20 40, lineto 300 40
A frgb 0 2556 0, linesegment 20 60 300 60

gmetro 33.3 frgb 0 0 255, pensize 4 8, linesegment 20 80 300 80,

linesegment 158 90 158 220
clear

jitlcd 4 char 320 240

Figure 4.

Shapes

Rectangular and oval shapes can be drawn with a single command. The shapes are fitted
into a rectangle you define as H V upper left and H V lower right. The shapes can be
painted or framed. Paint gives a solid shape, frame gives the outline.

paintrect

framerect

paintoval

frameoval

paintroundrect (needs 2 more values to specify radius of corners)

frameroundrect

Peter Fleea 1/10/12 6

Basic Drawing in Max.

framearc needs two more numbers, which are starting angle and ending angle. These are
given in degrees, where 0 is straight up.
setpixel HV R G B sets a single pixel to the specified color

The paint commands paint the area inside the bounding lines, and the frame commands
draw the bounding lines, so if you paint on top of a frame with the same numbers, the
right and bottom of the frame will still show. Paint commands do not move the drawing
pen.

framerect 60 60 260 180 25500

X
frameoval 80 80 240 160 0 0 255

slear metra 55.3 frameroundrect 70 70 250 170 30 30 0 255 0

jitlcd 4 char 320 240

Figure 5.

Poly

Polygons are painted with the paintpoly and framepoly commands. The arguments to the
poly are a list of points (H,V) the poly will be drawn to. It's analogous to a moveto
followed by series of linetos. If the lines cross, the paintpoly command will only fill areas
on one side of any of its lines. It looks for the best enclosure. Note that the poly will only
be closed if the last pair of numbers is the same as the first pair.

Regions

You can group a more complicated set of commands than the lines of poly. This is done
by the region procedure. To do this, you issue these commands:

* Recordregion

* Any number of drawing operations

* Closeregion somename

* Paintregion somename H V

Peter Fleea 1/10/12 7

Basic Drawing in Max.

You won't see any drawing until the paintregion command. The H and V of the paint
region will be added to whatever Hs and Vs were in the recorded drawing commands.
You may be surprised at what you see when you include linetos in the region recording.

You can have as many named regions as you want to, but when you are done with one,
you should call deleteregion to free up the memory. Clearregions deletes all regions, as
does reset.

frgb 0 00, framepaoly 0 20 40 60 recordregion, frameoval 0 0 80 60,
B0 20 12060 160 20 200 60 frameoval 80 0 160 60, frameoval
240 20 280 60 320 200 20 160 0 240 80, closeregion loops
frgb 25 0 0, paintpoly 0 100 40 60 frgb O 255 0, paintrgn loops 40 120
q.rnelrc 133 B0 100 120 60 160 100 200 60
T 240 100 280 60 320 100 0 100 frgb 0 0 255, framergn loops 40 180
clear
jit.lcd 4 char 320 240
Figure 6.

Clipping Regions

A clipping region is a area that limits drawing, sort of a cookie cutter effect. Once a
clipping region is defined, drawing is restricted to that region.

The following define clipping regions.

Cliprect

Clipoval

Cliproundrect

Clippoly

Only one clipping region is in effect at a time. You can have a complex clipping region
by making a region, and using the command:
Cliprgn somename H V

Peter Fleea 1/10/12 R

Basic Drawing in Max.

If a clipping region is in effect, the clear command only clears the clipping region. The
command noclip gets rid of the clipping region.

frgb 0 0 120, paintrect 20 20 300 220
. clipoval 100 60 220 180
- frgh 255 0 0, paintrect 80 40 240 180
_rnelrc 333

clear noclip

X

jitlcd 4 char 320 240

Figure 7.

Scrollrect

Scrollrect is similar to a region command. It copies whatever is in the specified rectangle,
erases the rectangle, then draws the copy into a rectangle that is moved by the specified
distance. That's all done by

Scrollrect H V H1 V1 mH mV

It's most useful for moving the entire jit.Icd contents. Note that once part of the drawing
has been scrolled off the screen, you can't get it back.

Text

Text is drawn starting at the pen location, and moves to the right with each letter. If you
want text to restart at the left and next line down when the right is reached, you have to
do that yourself.

Font name s changes the font to name and size s. You can get a list of available fonts
from the fontlist object.

Peter Fleea 1/10/12 9

Basic Drawing in Max.

The command [write something \, something] will write text. Note that some
punctuation, like comma, must be preceded by a backslash to be written properly.
The command ascii n n n n will translate the numbers to ascii equivalent letters and
write those. There's a chart of ascii at the end of this tutorial.

font Arial 14
moveto 40 40, write "Hello Venus"

moveto 40 80, font "Brush Script MT talic™ 24,
write "Hello Saturn”

X moveto 40 140, font "Futura Medium" 48

clear gmetro 33.3 ascii 104 101 108 108 111 32 109 97 114 115

jit.lcd 4 char 320 240

Hella Wenus

Hells Sature

hello mars

Figure 8.

picts
Pict files are an ancient Macintosh graphics files format. Very few graphics programs can
create them. PICTs live on in jit.Ilcd however. The command

Readpict aname filename will load a pict or jpeg file into memory. The name you give it
is just an identifier for it.lcd, it has nothing to do with what's on the drive. The name can
also refer to a named matrix. (Currently broken in Max 6)

The command drawpict aname will copy it into the drawing. Once this is done, there is
no connection between the image and the pict in memory. The arguments to drawpict can
make some interesting changes:

Peter Fleea 1/10/12 10

Basic Drawing in Max.

drawpict aname HV

drawpict aname HV w h

drawpict aname 0 0 0 0 sH sV sw sh

drawpict aname H V w h sH sV sw sh

deletepict aname

clearpicts

tilepict HV w h sH sV sw sh

will place the upper left corner of the pict at
H and V. Many picts include white space
around the edges, so you may have to allow
for that. (Try transparent mode)

will draw the pict at location H V with width
w and height h

will draw only part of the picture. SH sV
and sw sh determine which part of the
picture.

will draw part of the picture in the rectangle
scaled to fit into w h.

removes the pict file from memory but
doesn't erase it from the LCD.

removes all picts from memory.
tiles as many picts as will fit in the space

defined by H V w h. sH sV sw sh define the
part of the pict that is used.

Once you have built up an interesting image in your LCD, you can immortalize it with

the writepict command.

Peter Fleea 1/10/12

11

Basic Drawing in Max.

readpict myimage chilis jpg

drawpict myimage 20 20

—X

- drawpict myimage 120 100 160 120
metro 33.3

0

drawpict myimage 40 40 160 120

clear drawpict foof 180 140 80 60 importmovie, bang
i J

—

L
jit. matrix foof 4 char 320 240

led 4 char 320 240

Figure 9.

Peter Fleea 1/10/12 12

Basic Drawing in Max.

Co-ordinate Systems

Standard

I have described the image as an array of pixels, numbered with a pair of numbers from
left to right and top to bottom. This is the way jitter addresses the screen and is usually
convenient to use. There are some drawbacks however. We usually invent patches in a
low resolution like 320 x 240 so we don't have to worry much about performance.
Eventually, keepers are expanded to higher resolution. This requires the recalculation of
every point in the drawing, a tedious and error-prone process.

0 160 320

120

240 '

Figure 10. Native co-ordinates

Center Origin

I have found that recalculations are simpler if the origin (point 0 0) is in the center of the
image. This scheme is known as Cartesian coordinates’. A Cartesian co-ordinate system
looks like figure 11.

-16@ @ 160
-120 .
= = +_
@
- + + +
120

Figure 11. Center Origin or Cartesian coordinates

3 After mathematician René Descartes

Peter Fleea 1/10/12 13

Basic Drawing in Max.

The point 0 0 is in the center of the image. This divides the screen into four quadrants
according to the sign of the co-ordinates. The upper left has negative values for H and V.
The lower right has positive values for H and V. In the others, H and V have differing
signs. One advantage to this system is the image can be flipped right side up by changing
the sign of all V values. Another is that the size of many images can be changed simply
by multiplying the coordinates by a single value. Of course this scheme has to be
converted to standard coordinates for display. This is made easy by the Lobjects Ladd
and if necessary Lmult.

-120-80 120800 0 255
-100 -60 10060 0 255 0

00404025500

X

ladd 160 120 160 120

q-melm 33.3 clear p-repend paintrect

jitlcd 4 char 320 240

Figure 12. Drawing with center origin coordinates

If we prepend the command to the bottom of the chain of calculations, we save a lot of
typing. The Ladd object adds values of two lists member by member. The Lmult object
shown in figure 13 multiplies the values of two lists member by member, but if a single
value is entered instead of a list, all values of the input list are multiplied by that value®*.
Follow what happens when you click on the message with numbers [-40 -30 40 30]. The
list forst passes through Imult, whihc has been set to 3. This changes the list to be [-120
—90 120 90]. These are added to [160 120 160 120] (the center point) and become 40 30

* Most Lobjects work that way. One value processes an entire list, two values process the
first two members. If an input list is longer than the control list, extra values are passed
through unaffected.

Peter Fleea 1/10/12 14

Basic Drawing in Max.

300 210]. Prepend puts framerect before this list, so the outer box is drawn. The other bo
xes were drawn with different settings for Imult. If Imult were set to 0.5 there would be
an even smaller box.

40 -30 40 30

FnultT

X

_ ladd 160 120 160 120
metro 33,3 clear -

121

p-repend framerect

jitlcd 4 char 320 240

Figure 13. Resizing drawings

Drawing Pixels

I often draw with very small rectangles, even single pixels, but usually the rectangles are
2 x 2 pixels. (Single pixels do not show well in projections.) Rects 2 on a side can overlap
and give a consistent line, especially if the overall resolution is 680 x 480 or better. The
easiest way to draw these is to build off of the center origin technique as shown in figure

14. lln\{.ﬁn‘M

nack 000025500

ladd 159 119 161 121
I

prepend paintrect

T

Figure 14. Draw a 2x2 rectangle

The key feature is the pack object that builds up the list of parameters for the paintrect
command. The H value is sent to the first and third inlet and the V value to inlets two and
four. The last three inlets are for color-- the swatch object shown will provide all three
values (open the swatch inspector and set "old style 0-255 value"). This list is passed to

Peter Fleea 1/10/12 15

Basic Drawing in Max.

an Ladd object as before, but the numbers in Ladd now produce a larger rectangle. If the
location is given as 0 0, the rectangle will be painted as 159 119 161 121, centered in the
window.

Figure 15 makes a more elaborate image.

expr 10, * sin($f1* 0.16) ‘

X
J. I e
- pack 000025500
gmetro 33.3 | clear
Iﬂ’”ﬁf ladd 158 118 161 127
I
jit-led 4 char 320 240 prepend paintrect

Figure 15.

This is a simple trig function calculated in the expr’ object. The numbers going into the
expr come from the uzi® object, modified to range from -159 to 160. These numbers
become the H values and the output of the expr is used for V. We are literally drawing a
graph of the function. I'll explore this kind of drawing in another tutorial.

> Expr lets you write one line of C code.
% Uzi bangs a lot of times, as fast as possible. It also produces numbers from the right,
counting from 1 to the argument.

Peter Fleea 1/10/12 16

Basic Drawing in Max.

Polar Coordinates
.f'--’f__-ﬁ__‘--"‘
L 2
.'I \1
; r :
' a '
| Tr i
'._" @.'
"'\-\..‘ _TI __,-'

Figure 16. Polar coordinate system

You may remember polar coordinates from a trigonometry course or from looking at
response plots for microphones. Polar coordinates specify a location by a distance from
the origin (which is usually the center of the plot) and an angle from the horizontal. Since
the changing the angle while holding the distance steady produces a circle, the distance is
the radius or r. The angle is usually given as a Greek letter but in code we use a. The
angle is specified in radians. A radian is an angle of 57.28°, which is not important. What
is important is there are 2m or 6.28318... radians in a complete circle. This simplifies a lot
of math. (Really!)

Figure 17 shows a mechanism that calculates a circle full of angles in radians.

02 *0.02
S
poltocar

pack 0 00025500
T O
ladd 159 119 161 121
I
prepend paintrect
_

Figure 17.

This uses an uzi to produce numbers from 1 to 628. If we multiplied this by 0.01 it would
count in 100ths of a radian from 0 to 2w, once around a circle. Multiplying by 0.02
increases the step so it goes around twice. The radius is calculated from the same
numbers that drive the angle, increasing at 10 times the rate. This will produce a simple
spiral. The entire patch is shown in figure 18.

Peter Fleea 1/10/12 17

Basic Drawing in Max.

X

etro 33.? clear

|

0
RE

jit.led 4 char 320 24

pack 00002

55 0
ladd 159 119 161 121
I

prepend paintrect

e

---.-

Figure 18.

Polar coordinates can also be used to rotate an image. We do this by converting the
Cartesian coordinates to polar coordinates with some trigonometry hidden in the cartopol
object. We then change the angle and convert back using polfocar. Figure 19 uses the
drawing of figure 15 to plot a sine curve- however, by converting to polar, adding 1.57
(/2) to the angle and converting back, the image is drawn from top to bottom. This may
not seem like a big deal, since the original drawing could have been done that way, but
using a single value to control the rotation is very handy-- it can even be used in an
animated patch to make the image spin. Figure 20 was made by simply changing the

angle and drawing again. The angles used were 0, 0.78 and -0.78.

Peter Fleea 1/10/12

1R

Basic Drawing in Max.

expr 10, * sin($1* 0.16)
—

X

etro 33.? clear

|

I
jit.led 4 char 320 24 prepend paintrect

o
3

=

-

Figure 19.

Figure 20.

Peter Fleea 1/10/12 19

Basic Drawing in Max.

3D Coordinates

-1.33 7 1.33
1.0 :
Y
A
@ »X
1.0 |

Z is toward eye
Figure 21.

When we work in openGL with the jit.gl set of objects we will use a 3 dimensional
coordinate system. This is the Cartesian system with an added axis that points out of the
picture. All points are specified with three numbers relative to an origin of 0 0 0. When
we move objects toward negative Z values they will recede into the distance. Distances in
openGl are in floating point numbers. When we look into openGL space in jitter, the Y
axis at the origin runs from -1.0 at the bottom to 1.0 at the top. (Right side up.) If the
window has a 4:3 aspect ratio, the X axis runs from -1.33 to 1.33. The "frame" of the
window is at Z = 2.0, so if we move an object in the positive Z direction it will be behind
us.

There is a separate tutorial on openGl in Jitter.

Peter Fleea 1/10/12 20

Basic Drawing in Max.

ASCII Codes

Here's a table of the ASCII codes. The enigmatic ones like ETB apply to teletypes and
the like. You might get them from some serial applications. The parentheses indicate the
Mac key that generates them.

0 NUL 34 "

1 SOH (Home) 35 #

2 STX 36 $

3 ETX (enter) 37 %

4 EOT (end) 38 &

5 ENQ 39 '

6 ACK 40 (

7 BEL 41)

8 BS (delete on Mac) 42 *

9 HT (Tab) 43 +

10 Line feed 44 ,

11 VT (Page Up) 45 -

12 Form Feed (Page Down) 46 .

13 CR (return) 47 /

14 SO 48-57 numbers 0 -9

15 SI 58 :

16 DLE (all F keys) 59 ;

17 DCl1 60 <

18 DC2 61 =

19 DC3 62 >

20 DC4 63 ?

21 NAK 64 @

22 SYN 65-90 Capitol A -Z

23 ETB 91 [

24 CAN 92 \

25 EM 93]

26 SUB 94 A

27 escape (also clear) 95 _

28 cursor right 96

29 cursor left 97 -122 letters a - z

30 cursor up 123 {

31 cursor down 124 |

32 space 125 }

33 ! 126 ~
127 DEL

Peter Fleea 1/10/12 21

