
DANM 220 Overview 2012

Peter Elsea 1/9/12 1

DANM 220 2012

Topics for DANM 220 Winter 2012.

Assignments:

• Random Drawing: create an image with some aspects based on chance.
• Filter a Movie: make a movie unrecognizable but interesting
• Triangle: create a program that builds layers of Sierpenski triangles
• Follow post-it: use findbounds to trace an object's motion.
• Visualizer: write a patch that responds to music.

Date topic Objectives demo assignment
Jan 9 Essential

Background
Coordinates, colors,
Define frame structure

Setup Set up Max

Jan 11 Basic drawing Code structure,
functions,

Rorschach

Jan 16 Holiday
Jan 18 Animated

drawings
The draw loop Bouncer Random

drawing
Jan 23 Movie

munging
pixel color, color
processing

Load movie,
Canned filters,

Jan 25 repos Image distortion ReposTut Filter a movie
Jan 30 Drawing with

trigonometry
Function based images Arabesques

Feb 1 Feedback
tricks

Iterative processing,
fractals

Feedback, ferns triangle

Feb 6 Live video Video capture &
analysis

Zen mirror,

Feb 8 object tracking Trigger events from
motion

hotspots Follow the
post-it

Feb 13 The 3D world Intro to openGL GLtut
Feb 15 More 3D Bouncer3D
Feb 20 Holiday
Feb 22 Sound

&visualization
Playback, capture,
Audio to image

Simple loop,
lissajou,
waveform

visualizer

Feb 27 shaders The GPU Rota, chladni,
mandelbrot

Work on
projects

Feb 29 gen Low level coding ""
Mar 5 Input Keyboard, mouse &

external devices
HI,MIDI,OSC,
firmata

""

Mar 7 Output External control DMX, firmata ""
Mar 12 Crit Student projects
Mar 14 Wrapup

DANM 220 Overview 2012

Peter Elsea 1/9/12 2

What exactly can a computer do for the artist?

• Projections and screen display.
• Control artistic contraptions.
• Change the audience experience with responsive systems.
• Surprise us.
• Evolve.

The realities of the digital canvas.
The digital canvas is some sort of computer screen or a projection. The colors you get
will be somewhat different from model to model. (Imagine what kind of painting you'd
get if the color of the canvas kept changing.) Many projectors have a pixel architecture
that is different from computer screens, say 1280 X 720. Converting a 1024X 768 image
will require rescaling, which often introduces lateral lines or other distortion.

The level of detail is limited by the screen resolution. It is also limited by the power of
the computer hosting your application. There are millions of pixels in a single frame of
video, and calculating a frame will take many machine cycles per pixel. All of a sudden a
billion operations per second does not seem very fast. Computers have both a CPU
(central processing unit) and GPU (graphics processing unit, generally part of the display
card.) The GPU is about a thousand times faster than the CPU, but it is often awkward to
use. For instance, GPU programming is done in a different language. (We can program
the GPU in Max, but not in processing.) In all cases there is a tradeoff between resolution
and time.

The time/resolution tradeoff means the frame rate is often less than the optimum 30 fps.
We usually don't notice until the rate goes below 20 fps, but our perception change is
sudden. This happens at different rates for different people. Slow rates may be tolerated
for images that don't change much.

The third dimension.
The world has become accustomed to very real 3D images from features like "Finding
Nemo" and "Avatar". Of course those are produced on render farms with 1000 machines
producing a few minutes a day. A more realistic goal is game level realism. That means
simple textures, less subtlety in lighting, and so on.

We specify 3D images through a language called openGL. Both Max and processing
support openGL, and try to help with the more tedious aspects of working in that
language. Max 6 offers important improvements in game style graphics.

Image and sound.
Our works of art need not be silent. Processing will allow cued playback of recorded
material and samples, as well as some elementary synthesis. Max/MSP is a full fledged

DANM 220 Overview 2012

Peter Elsea 1/9/12 3

synthesis and DSP environment. The two can coexist and communicate, so using
Processing for images and Max for sound is perfectly feasible. Either can also
communicate with most audio platforms such as Reactor, Supercollider, ChucK and
Csound. Max can host your choice of plug-ins.

Creating images out of sounds is also feasible in either language.

Transformation of pixels
A lot of video art is based on transforming existing video footage. At one time there were
modular video synthesizers to complement the more famous Moogs and Buchlas. These
performed analog processes like threshold switching and slew limiting. In digital
processing, it is the color of pixels that is modified. The modifications can be based on
several things. For instance, if there are two video sources, the color of a pixel may be
compared to a specified color. If they match, the output is taken from the second source.
Otherwise the first source is passed through. Thus everything colored green in the A
signal is replaced by colors from the B signal.

Algorithmic drawing
Tools like Illustrator let us use the computer as a canvas, transferring ideas from our head
to the screen. Max and Processing move some of the decisions to the computer. All we
have to do is invent rules for the computer to follow. The rules are necessarily based on
mathematics, but the math need be no more complex than what's needed to balance a
checkbook. One beauty of algorithmic drawing is the rules are controlled by parameters
supplied by the artist. This means many images can be made from the same algorithm.

• Geometry produces straight line figures. You can do a lot with straight lines,
especially if they make up tiny triangles. The underlying concept is the vector, but
that is only an instruction of where to go.

• Trigonometry produces curves. These curves are defined by angles and functions
based on the angles. These functions are deep math, but the computer will
perform them for us.

• Iterative function systems apply functions to input, then apply the same function
to the results. When we get an image we like, we quit. This kind of thing can
produce remarkable images including plants, mountain ranges and snowflakes.

• Chance operations inject random functions into a process so each run produces a
different image.

Dynamic Drawing
Computer art does not have to stand still. If we use time as parameter the image can be
redrawn with subtle changes or drawn fast enough that the eye is fooled into perceiving
motion.

• Loops perform the same pattern of operations over and over again. This gives
simple animation, or a painting that follows the time of day.

DANM 220 Overview 2012

Peter Elsea 1/9/12 4

• Physical models follow some of the rules of the real world. This produces action
like bouncing balls or growing vines. This also includes chaotic systems with
repeatable but surprising behavior.

• P-systems take modeling down to molecular level. They can be used to create fire
and smoke and flocking birds.

Noticing the world
Computer programmers often speak of real time. This is code that runs fast enough that
response seems simultaneous with input. Even if there is noticeable delay, an art program
can respond to changing environment or requests by users (whom we define as someone
who is operating the program, but did not write it). This input takes two forms:

• Camera input captures images. These images can be used as source material for
image processing or analyzed to provide control parameters for the program.

• Physical sensors can detect practically anything. We can build a system that is
played like a violin or tracks the humidity over several days.

• Network links expand the input range to include a large part of the world. Again
the foreign data can provide raw material or control.

Controlling the world
The program output is not limited to images on a screen. Anything that is electrical can
be controlled, either directly from an Arduino style circuit or a standardized network
protocol. A program can generate instructions to a performer or mechanic or another
computer program.

The way of code
The only true mastery of a computer comes through the ability to write code. When we
use canned software, we are bound to a certain world view, accepting the priorities and
paradigms of the software's author. With millions of programs available, it seems we
should be able to find something that matches our needs and methods, but we soon
realize the search takes longer than the task, and we settle for anything that will get the
job done.

It is absurd to consider writing any application from the ground up. Fully formed
applications require complex operations for screen display, file storage and retrieval,
communications and numerous other functions. These problems have been solved again
and again-- tackling them is a waste of our time. Instead, we build on other's work,
adding our code to a platform of routines that satisfy the standard needs. We will work
with one of two platforms:

Max/MSP/Jitter lets us assemble complex programs from building blocks of working
code. The process seems something like Legos at first. As with Lego building, you are
limited to the objects already provided, and these objects force a certain overall shape.
However, there are so many objects available that just about anything can be done within

DANM 220 Overview 2012

Peter Elsea 1/9/12 5

the system. Unlike Lego, it is possible to invent new objects. There are enough people
doing this now that Max has reached a critical mass, and the possibilities are expanding
faster than any one person can reach the limits.

Processing provides a nearly complete application called a sketch. It is your job to
complete the application by writing two or three unfinished sections of code. The result is
a Java applet, suitable for adding to a web site or running an installed art work. The scope
of Processing is not limited to computation and screen display. It can generate audio and
MIDI or communicate with Arduino to control external hardware.

In either platform the development process goes through the same steps, steps necessary
to many complex undertakings. The steps are specification, design, coding and testing.

Specification
An application begins with a problem to be solved or an operation to be performed. The
more precisely the problem or operation can be defined, the easier the code will be to
write. It is possible to change your mind, to add features or remove them, but the later
this happens the more wasted work. Changing specs midway can also lead to internal
inconsistencies that will wreck the entire program. Specification is not as formal or
complex as it sounds. It's just a list of inputs and outputs with a description of how they
relate. If you think of it an instruction manual, it becomes a much less academic
undertaking.

Design
Design is the creative phase, the invention of algorithms to get the work done. A lot of
these algorithms have already been invented, so your first task is to research the field and
find them, or something close enough to be modified. Resist the urge to write code during
the design phase, except little experiments to test something. The result of the design
phase is a flow chart showing how one action leads to another. Make sure every input and
output in the specification is included.

Coding
Writing code is the tedious part of the process. If you work in Max, the code resembles
the flow chart. In Processing, every object in the chart is represented by a paragraph of
code that defines a function and the structure is defined by calling functions in the draw
routine. Coding is made difficult by the terse vocabulary and rigid syntax of Processing
or the subtle gotchas and annoying inconsistencies of Max.

Testing
Testing actually begins as soon as there is enough code to test. If the flow chart is
complete, the input and output of the functions will be clear enough to try each out as
they are written. Once the whole thing is operational, give it to someone else. It will
immediately break. Find out how your tester broke it and figure out the problem. Repeat
the process until your tester cannot break it. It is tempting to test it yourself, but you will
be amazed at how your intimate knowledge allows you to subconsciously avoid
dangerous operations.

DANM 220 Overview 2012

Peter Elsea 1/9/12 6

Revision
Testing and use will inevitably lead to revisions of the program. When you do this, don't
just jump in and modify code. Go back and change the specifications, then see how wide
ranging the effects of the change will be.

Documentation
The initial specification can be revised into instructions for using the program. You
should also include comments in your code that describe the operations of each section.
Make these clear enough for a stranger to understand1.

1 That stranger is you, in about 6 months.

