
Graphs in Max

Peter Elsea 2/6/12 1

Graphs	
 in	
 Max	

This note demonstrates a few techniques for making graphs with Max.

Gathering	
 Data	

The web is a great source of data about all manner of things, but there is a
current (and understandable) trend to present data in graphical and even
interactive forms. If we want to make our own presentations, we need the
original, raw data, which can take a lot of snooping. We are looking for text data,
which will usually be in a table such as figure 1.

Figure 1. Source: http://climate.umn.edu/doc/historical.htm

This is going to require some work before we can use it, but it’s not as bad as
some. This preparation is best done in a text editing program like TextWrangler1.
Fancy editors like word cannot be counted on to provide plain text documents
that we can load into Max. This is what must be done:

• Remove all headers—everything that is not the data. (Keep a complete
copy though.)

• Remove unnecessary columns. In this case, a find and replace all
operation was sufficient, but sometimes you have to resort to GREP2. It is
possible to just ignore unneeded columns in our Max patch, but the size of
these files often becomes an issue.

1 Free from http://www.barebones.com/products/textwrangler/
2 GREP stands for Global Regular Expression Print, a scheme for finding text based on format
rather than content. TextWrangler does GREP, one of its many charms.

Graphs in Max

Peter Elsea 2/6/12 2

The final version of this data looks like figure 2.

Figure 2.

We bring text into Max with the text object. Text can take an argument for the file
name, and responds to a read command.

Figure 3.

Once the file is in a text object, you can double click on the object to open a
simple editor. The contents of text objects can be extracted line by line as shown
in figure 3. Each line comes out as a list beginning with the word set. (This was
originally designed to work with prehistoric message boxes which require a set
message to change contents.) The route set object followed by unpack will parse
the line into individual values for each column. This particular file includes
index numbers (the year the value refers to in this case) which will make the
patch fairly simple.

Graphs in Max

Peter Elsea 2/6/12 3

Line	
 Graph	

Figure 4.

In figure 4, the data is read line by line by an uzi object and graphed by
linesegments. Two processes are necessary to do this—the data must be
converted into X Y coordinates and the coordinates must be formatted to give a
clean drawing. The coordsFromData subpatch does the first task:

Figure 5. CoordsFromData subpatch

Graphs in Max

Peter Elsea 2/6/12 4

Figure 5 shows the contents of coordsFromData. This determines how the data
will be graphed, and must be customized for every situation. Choosing the best
way to graph values is an art form by itself. There are many useful books on
designing graphs, such as “Show me the Numbers” by Stephen Few (Analytics
Press 2004).

This subpatch works on the list from the text object, which is unpacked for
independent processing. In this example, the data from the left outlet of the
unpack will be the year index values, which start with 1896. Subtracting 1890
will give a few pixels space at the left margin of the graph. That value is then
multiplied by 5 to give the proper spacing. The multiplier is chosen to give
enough pixels per datum to fill the graph—here there are 117 values to graph, so
a 5 pixel interval will nearly fill a width of 640. (If the data does not include index
values, the index output of uzi (less one) can be used.)

The right outlet provides rainfall values, which range up to nearly 50 inches but
are mostly around 30 inches. 4 pixels per inch will give an attractive vertical
spread. These numbers must be subtracted from the coordinate of the bottom of
the window (240) to turn the graph right side up.

Figure 6. Pack&buf subpatch

The coordinates produced by coordsFromData must be formatted for the
linesegment command. This requires two pair of coordinates: the last destination
and the new one. To remember the last coordinates, the pack&buf subpatch
stores the incoming coordinates in an lbuf object3. Lbuf holds a list until a new
one comes in. Lbuf must be primed for the first segment to be drawn (it normally
outputs 0 0 when it receives its first list of the day). This priming is provided by
the gate object. Inlet 3 receives the index number from the uzi that is scanning the
file. This number will be 1 for the first point drawn. If the gate receives a 1 in the
control (left) inlet, numbers received in the right inlet will come out the left
outlet. Other numbers will steer data out the right. In this case, when the gate is
set to 1, the coordinates will be stored in lbuf via the right inlet and sent out
when the coordinates arrive again at the left inlet. Thus the coordinates will

3 This is one of my Lobjects, available from ftp://arts.uscs.edu/pub/ems/Lobjects/

Graphs in Max

Peter Elsea 2/6/12 5

match on the first line--this will cause linesegment to draw a point. All of this
draws the lines shown in figure 4.

Labels	

The next task is to draw labels on the axes to define the graph values. This is in
the axes subpatch which is triggered by a bang and generates commands to
jit.lcd.

Figure 7. Axes subpatch

There are three parts to this subpatch. On the right (first to execute) the drawing
color is set to black. The center section labels the horizontal axis. Uzi will
produce numbers from 1 to 13, which are changed to be 0 to 12 so we can easily
calculate the years and positions for each year4. The year will be the starting year
followed in increments of 10. These will be spaced 50 pixels apart, starting with a
1 pixel offset. The values for year and position are packed and applied to a two
part message. The message moveto positions the pen one pixel above the bottom
and the command write prints the year as text. The third section of the patch
draws the left index in the same manner. The result is visible in figure 8.

Figure 8. Graph of yearly rainfall in Santa Cruz and Iowa City

4 This is why programmers prefer to count starting with zero.

Graphs in Max

Peter Elsea 2/6/12 6

Figure 8 also shows how easy it is to add more functions to this graph-- just read
another compatible set of data and change the color.

Bar	
 Graph	

A bar graph is a simpler patch. The coordinates only need a minor tweak to work
with paintrect. They are applied to a pack for the left and top values, and the
right is calculated as 4 pixels more than left. The bottom value is entered into the
pack and left alone.

Figure 9. Rainfall in Santa Cruz

Graphs in Max

Peter Elsea 2/6/12 7

Pie	
 Charts	

Figure 10. Sample pie chart

A pie chart is easy to make using the paintarc feature of jit.lcd. Paintarc requires
9 arguments. These are: Left, top, right, and bottom of the enclosing box followed
by angle start (degrees) angle width, and color.

The tricky part of pie charting is figuring out the angles to represent each value.
A pie chart is only useful for a dozen or so values, so it is reasonable to process
them in a list. The list can be generated from a text file formatted with one value
per line. Then the uzi and text object we have used before gather the values into
a list with the thresh object.

Graphs in Max

Peter Elsea 2/6/12 8

Figure 11. Data to be charted.

The values used in figure 10 are shown in figure 11. In order to display them in a
pie chart we must know what percentage each value is of the total. That action is
shown inside the dothemath subpatch. This is not rocket surgery—the sum of all
values in the list are divided into 360 to get a conversion factor that equates all
values to a full circle. Each member of the list is then multiplied by this factor.

Figure 12. Dothemath and format subpatches

The format subpatch is more complex, primarily because of the need to keep
operations in the correct order. The data enters as a list. The list is fed to a trigger
object (t) that bangs to send a goto 0 message to the coll and a clear message to
laccum. These reset the objects to an initial state. The list is then passed on to iter.
Iter breaks the list into a stream of angles. Each value then triggers the following
actions:

1. A color is packed into the last three positions of a five element list. The
colors are stored in a coll5 so that the order of items in a list will determine
the color.

5 Remember to open the coll inspecter and check “Save data with patcher”.

Graphs in Max

Peter Elsea 2/6/12 9

2. The angle plus one is packed into the second spot in the list. The one is
added to make sure the wedges overlap slightly. Otherwise there may be
white spots.

3. The current value in laccum is packed in and the list sent out. We are not
done however—laccum keeps a running total of the angles processed so
far. The new angle needs to be added in for the next go ‘round so the
itered value is passed out again, this time as a float6.

Once this list leaves the format subpatch, the command paintarc and the
coordinates of the enclosing rectangle are prepended.

Labels	

Adding automatic labels to the pie chart is fairly complex. The labels must be
printed in a circle with the end of the label near the center of each wedge. Figure
13 shows one way to format the data files to include labels.

Figure 13. Sample data with labels

There’s no particular advantage to putting the labels after the data, but it looks
neater.

Figure 14 shows changes to the main patch. There is a new subpatch named
labels that needs a lot of information. The messages to this subpatch are, from
right to left:

• A bang to reset objects in the subpatch when a new plot is started.
• The names split off from each line in the file. The ‘s’ in an unpack object

means a symbol is expected here.
• A item number supplied by the format subpatch as the wedge drawing

commands are assembled. This is available inside the format from an
outlet on the coll that selects colors.

• The list of angles from the format subpatch.

The contents of the labels subpatch are shown in figure 15.

6 If the angle were to be passed as an int, the fractional part of each would be lost and the total
would be less than 360.

Graphs in Max

Peter Elsea 2/6/12 10

 Figure 14. Pie chart with labels

Graphs in Max

Peter Elsea 2/6/12 11

Figure 15. Labels subpatch

There are two parts to the labels subpatch. The mechanism on the right collects
the labels from the file as the uzi in figure 14 steps through the lines. Ltocoll is an
object specifically designed for the task of entering itered data into a coll. For
each item that comes in, it creates an address and outputs a list of the address
and the item. When the format subpatch in figure 14 sends an item number, this
coll will produce the associated name, which is packed as the third item in a list.
The route object is there to strip the word “symbol” which always precedes a
symbol output from a coll. (Another prehistoric feature of Max.)

The left hand of figure 15 converts the angles produced by the format subpatch
to radians. Since the wedge is drawn from the starting angle ($f1 in the expr)
along an arc $f2 degrees wide, the center of the wedge is at $f1+ $f2/2. The long
fraction converts degrees to radians. Finally 1.57 is subtracted7 from the new
angle, because while paintarc counts from 0 degrees at the top, poltocar places 0
at the right.

This angle is converted to Cartesian coordinates with a fixed radius of 110 pixels.
This is offset to the center of the graph with one wrinkle: if the label is on the left
of the figure (X will be negative) an extra offset to the left is used to make room
for the end of the label to clear the graph. In an extra fancy version this offset
would be made variable to match labels of different lengths.

7 It’s subtracted, because poltocar produces positive Y for positive angles, but positive Y is
counted from the top of the window down.

Graphs in Max

Peter Elsea 2/6/12 12

Jit.Graph	

Figure 16. Rate of snow accumulation in Greenland by depth in ice core

Jit.graph is a powerful graphing tool within limits—it works best for dense data
such as audio waveforms. For small sets of data it is just too coarse a display. In
figure 16 a jit.graph is displaying the rate of snow accumulation in Greenland for
the last 50,000 years.

Jit.graph takes its data from a 1 dimension array containing the data. These
numbers are mapped 1 per pixel across the height (default 240) of an output
matrix. The @rangelo and @rangehi attributes determine the vertical scale. The
width of the output matrix is determined by the length of the input matrix—in
this patch the length is automatically set when “query” is sent to the text object.
Text sends a pointer to the first empty line of the loaded file from the right outlet.
Since text counts the first line as one, we have to subtract one from this value to
get the size of the matrix.

Graphs in Max

Peter Elsea 2/6/12 13

The matrix snowfall is stuffed with setcell messages. This takes an index (from
uzi with one subtracted) and a val, which here comes from the second column of
the data.

The trick to using jit.graph is in finding the right dimensions to make a clear
display. The output is always as wide as the input data, but that is stretched or
squeezed to fit the display area in the window. There are several modes of
display, which helps a lot. Mode 3 is a bar graph.

Interaction	
 with	
 jit.graph	

Figure 17. Rate of snow accumulation in Greenland with zoom and scroll

Graphs in Max

Peter Elsea 2/6/12 14

Figure 17 revises the presentation of figure 16 and includes some interaction. The
revision deals with a quirk in the data. This is a graph of snow accumulation
rates over 50 millennia. Since the data was taken from ice cores, it is backwards—
to display the data chronologically, we have to reverse the data. This is easy to
do at the text dump stage. Figure 17 calculates the address in the snowfall matrix
by subtracting the uzi index from the size of the data. This fills the matrix
backwards.

Figure 18.

Since the output of jit.graph is a stream of matrices, we can update the display
interactively. The snowfall data consists of 1697 points and is hard to see in
detail. All of the data is in the jit.graph output, but it is squeezed to fit a window
640 points wide. The solution is to provide the ability to scroll through the data
and to zoom in and out.

The manipulation is made possible by adding an intermediate matrix
“displayme”. This matrix has source dimensions enabled, so it can copy selected
sections of the jit.graph output. The scrolling operation is contained in the stretch
subpatch shown in figure 19. The role of this subpatch is to calculate values for
source dimension start and source dimension end.

Figure 19. Stretch subpatch

Graphs in Max

Peter Elsea 2/6/12 15

The default is to display the first 640 points. This is with start position 0 and
zoom at 1.0. Increasing the start point will move through the data range.
Changing the zoom will change the width of the source rectangle, which will be
interpolated to fit into a matrix 640 by 240. I’ve used a slider to control position
and a number box for zoom. These would probably be repositioned under the
graph in presentation mode.

It is possible but complex to provide axis labels within jit.graph—that would
require a composting stage or a jit.lcd, so I have chosen to take the easy way and
display axis labels in comments. Comments can be changed by a set message,
which are generated in the labels subpatch, shown in figure 19.

Figure 20. Labels subpatch

The labels subpatch depends on data sent from several sources in the main patch.
The receive (r) object named “raw” gets a complete copy of the data extracted
from the text object. This is processed by a couple of lobjects. Lswap8 0 will pass
only the first column of data, which contains the age of each sample. Lround 2
rounds the numbers off to 2 decimal points. These numbers are stuffed into a coll
via ltocoll.

The stretch subpatch sends the start and end points of the data to display under
the name “range”. When the range changes those points will be subtracted from
the last address in the data (to compensate for the reversed display) and used to
fetch values that will be sent to the left and right captions.

Since jit.graph is producing matrices, it is possible to overlay several, call up
different views and even cross fade graphs. See the tutorial on compositing for
ideas on how to combine images.

8 Lswap rearranges lists according to its argument list. The first item in a list is indexed at 0, so
lswap 0 2 would pass the first and third items.

Graphs in Max

Peter Elsea 2/6/12 16

2D	
 Mapping	

This section is based on material in the book “Visualizing Data” by Ben Fry
(O’Reily 2007). This book does a fine job of introducing the art of graph building
with code examples in the Processing language. It’s not too difficult to convert
the methodology into Max operations, and some of the code can be used directly
in the mxj or js java objects.

Two dimensional graphs are often used to relate some factor to location. For
instance, we often see maps of the country colored in with demographic
information. This is reasonably easy to do, because the census bureau releases a
lot of economic data organized by zip code, and the post office publishes zip
code databases with location information of each office. Ben Fry has posted the
latter on his web site for users of his book9.

Figure 21. Zips.tsv

Figure 21 shows the beginning of the zip code location file. For each zip code,
there is a longitude and latitude and the name of the post office. The longitude
and latitude numbers will not look familiar- they have been converted to radians
and the longitude is relative to a point at 96°W (a bit west of Houston). They
have been further tweaked to give a conic projection map. The top line shows the
minimum and maximum for both values, which will be a help when we plot the
locations.

This data could be mapped directly from a text object, but it will be much more
efficient to use a coll. Figure 22 shows a patch for transferring the information.
The procedure then becomes:

1. Clean up the text file in an editor like TextWrangler.
2. Read the file into the text object.
3. 3 adjust the Lswap object to filter for the columns desired. Note that the

first item in the output lists will become the address in the coll. Thus
Lswap 1 410 with figure 21 would produce a coll of names addressed by
zipcode.

4. Dump the text. Be prepared to watch the spinning ball for a while.
5. Double click the coll to check the contents- test an interesting address.
6. Click write to save the coll data to disk. You can then use this file name as

an argument to coll when you want that data.

9www.benfry.com If you find this resource useful, it wouldn’t hurt to buy the book.
10 Lswap 0 would include the word set that the text object sticks on everything.

Graphs in Max

Peter Elsea 2/6/12 17

Figure 22. Conversion of text file to coll.

I used this process to convert figure 21 to a coll of locations for each post office.
Figure 23 shows how I plot them.

Figure 23. Map of post offices.

This uses our standard trick for drawing rectangles. Since the locations are
expressed as fractions, they need to be multiplied by some factor to fill the jit.lcd.
The factor used in figure 23 leaves a 24 pixel margin at the left and right edges.
That can be calculated from the header line of figure 21: The difference between
the leftmost and rightmost point is 0.71875026. If we divide that into 592 (width
of finished image) we get 825. The offset values in the ladd have to be found by
trial and error, because the image is not quite centered in the window. The
vertical offset was particularly tricky, since it refers to the equator, which is well

Graphs in Max

Peter Elsea 2/6/12 18

below the window. Any change in the scaling factor also required a change in
offset. The reason for the fussing is apparent in figure 24.

Figure 24. Map of population by zip code

Here I have added an image of a US map (which is also available from
www.benfry.com). The map dimensions are 640 by 400, and I rescaled the dots
over this map several times to get them to match. The colors in this map come
from a second coll that has population of each zip code addressed by the zip
code. Thus, while the metro is stepping through the coll with locations, the
address coming from the second outlet pops the population value out of the
second coll. This chooses a color (using the hsl method) to use in drawing the
dot. The result is shown full size in figure 25.

Graphs in Max

Peter Elsea 2/6/12 19

Figure 25. US population by zip code

