
Animation in jit.LCD

Peter Elsea 1/17/12 1

Simple Animation with jit.LCD

Object movement
The jit.LCD object will draw fast enough that we can do simple animation on the fly. The
secret to animation (as opposed to gradually filling the screen) is to clear and draw the
image once per frame. Usually we start by designing an image, then attaching the
animation afterward. If we keep the number of parameters needed to draw to a minimum,
it will be relatively easy to add animation. Figure 1 is a patch that will draw a circle
anywhere we want it.

Figure 1.
This patch will work like an Etch-A-Sketch. Adjusting the X and Y number boxes will
draw the circle in a new position- this will build up an angular image until the jit.lcd is
cleared.

A patch like this is often easiest to understand if we analyze from the bottom up,
repeatedly asking the question, where does the data come from? The draw command to
jit.lcd is paintoval, which requires arguments for left, top, right, bottom. These arguments

Animation in jit.LCD

Peter Elsea 1/17/12 2

are supplied as a list, to which paintoval is prepended. The list is constructed in a pack
object. The data comes from the three number boxes labeled X Y and Radius:

Left = X - Radius
Top = Y - Radius
Right = X + Radius
Botttom = Y + Radius

Pack will produce a list every time the left inlet is changed. That means changing Y
would not create a new circle on its own. To make that happen, I added a button to bang
the list from pack when Y is changed. It's important that the bang is to the left of the math
boxes. Otherwise, the pack would send a list containing the old Y data before the new
data was calculated.

Figure 2.

In figure 2, I have made two changes to the patch. I have replaced the button with a
trigger (AKA "t") object attached to the qmetro. This trigger produces three bangs each
time it is banged. The right outlet bangs the clear command to the jit.lcd, the middle
outlet bangs the pack, which will send its current list along and draw a single circle.
Finally the left trigger outlet will send the image out of jit.lcd. What you see is a spot that
moves when you adjust X or Y and changes when you drag the circle in the Color

Animation in jit.LCD

Peter Elsea 1/17/12 3

swatch. Changes in radius are not apparent until the X is next changed, but that could be
sorted out with another trigger object.

Figure 3.

The simplest way to animate this patch is to add counters to control X and Y. With 2 as
the first of three arguments, a counter will count back and forth between the other two
arguments. With the patch as shown the blue ball will drift around the screen, bouncing
off the edges. This can be refined by adjusting the endpoints of the counters to
compensate for changing the radius of the circle. We can change the rate of motion by
modifying the output of the counters.

We can get an interesting result by adding a fade effect to the jit.lcd. This is done by
copying the output of the jit.lcd to a named matrix, then using a matrix of the same name1

to replace the clear command. There should also be a jit.op set to multiply this matrix by
0.999. All of this has been added to figure 4.

1 If matrices share a name, they also share the data. We use two here to avoid a stack
overflow error.

Animation in jit.LCD

Peter Elsea 1/17/12 4

Figure 4.

This it what is going on with each tick:
• The image in the matrix named memory is output to the jit.op
• The jit.op multiplies all values by 0.999, which makes the image slightly darker.
• The darkened image is applied to jit.lcd, replacing the contents.
• A new circle is painted on top of the old image.
• The new, composite image is displayed and copied into the memory matrix, ready

for the next frame.

The result is an image that fades out over time. Instead of simply moving around, the
circle leaves a tail. This is an example of feedback, which has a tutorial of its own.

In figure 4, I have encapsulated the middle of the patch into the subpatcher drawoval.
(Shown in figure 5.) This makes the patch a bit neater, but also raises an important
implication: any subpatcher that issues a drawing command when it is banged could be
used in this place. That includes images from paintrects. There can also be more than one
object- in fact, the complexity of the image is only limited by the amount of drawing that
can get done during one tick. So, animation of object movements only requires two

Animation in jit.LCD

Peter Elsea 1/17/12 5

elements-- a mechanism that draws on command with an X and Y parameter to set
position, and a mechanism to calculate movement.

Figure 5. Contents of drawoval

Object Rotation
The tutorial on basic drawing introduced the concept of using polar coordinates to rotate
a drawing. Figure 7 began as figure 19 from that tutorial. I have added three elements:

• A mechanism to change the angle of rotation
• A mechanism to change colors
• The feedback scheme described above

I have used my Lcount object to drive the rotation and color change. Lcount is similar to
counter, but has a different set of features:

• Lcount counts by an increment that can be other than 1. This gives precise control
of rate of motion, and smoother movement.

• Lcount can count by floats-- when doing so, it wraps around instead of returning
to the start value when the count exceeds the end value. This produces smooth
circular counting.

• The end value of Lcount may be less than the start value.
• You never see the end value from Lcount. If the count range is 0 to 16, you get 16

counts: 0 to 15. This is the type of counting provided in most programming
languages.

• The count value comes out of the center outlet. The right outlet bangs when the
count hits the high point, the left bangs when the count returns to start. I often use
these bangs to stop a counting operation. If the right outlet stops the count, the
final value will be the end of the range. If the left outlet stops the count. The final
value will be 0 (or the initial value).

Animation in jit.LCD

Peter Elsea 1/17/12 6

Figure 6.

Figure 6 shows how Lcount can generate a series of angles for rotation. Bangs come in
from some steady source such as the qmetro. With a target of 6.28 (2!) no extra
processing is needed. Each bang increments the count. The increment is set by the first of
three arguments or a value in the second inlet. With an incement of 0.1 it will take 62
frams (two seconds?) to get to the top. The higher the increment, the faster the counter
will reach the end of the count. If the increment is negative, the count will go backward.

Figure 7.

Animation in jit.LCD

Peter Elsea 1/17/12 7

A bottom up analysis of figure 7 goes like this:
• The draw command is paintrect, which is prepended to a list of data.
• An Ladd offsets the drawing origin (0 0) to the center of the screen, and sets the

rect dimensions to 2x2.
• The data is gathered by a pack object- four values for position are derived from

two outputs of a poltocar, three values for color are derived from a swatch. (I'll
discuss what the swatch is doing shortly.)

• When we see a cartopol connected almost directly to poltocar, we recognize a
rotation is being applied. Rotation is accomplished by changing the angle, usually
by an addition.

• If we follow the branch that sets the angle, we find the Lcount mechanism
recently discussed.

• The Y value going into the cartopol is the sine of the X value, with some
modifications to affect the height and frequency of the sine curve. (This is
discussed in trigonometry notes.)

• The values for X and the sine expression come from an uzi that generates
numbers 1-240 on each tick. 160 is subtracted from these numbers, so they
actually run from -159 to 80. When offset to the center origin a line will be drawn
from the left edge to halfway between the center and right edge. In other words,
the line is not rotated about its center. This produces the effect of a bright disk
surrounded by filaments you see in figure 7.

• Uzi is banged by the output of a receive object named tickit. Somewhere there
must be a send object with a matching name. (If you double click on the receive,
Max will show you the send.) Here it is the center output of the trigger on the
qmetro, so drawing happens between the clear and the bang that causes jit.lcd to
output.

• The leftmost stack of objects is familiar. The toggle turning on a qmetro is found
in every jit.lcd patch. A trigger to provide three bangs usually means an animated
patch. (There may be an exam.) in this case, the right outlet of trigger is connected
to jit.matrix instead of a clear to produce the fade effect.

Object Color

Figure 8.

The colors in figure 7 change slightly on every tick. The color comes as a list from the
swatch object, which outputs a list of RGB values when the little circle is moved. The
values are from 0-1.0 unless you open the inspector and set "Output old style 0-255
values". The new style is compatible with openGL, but jit.lcd still requires old style. The

Animation in jit.LCD

Peter Elsea 1/17/12 8

swatch cursor can be moved by various commands, the most useful of which is hsl. This
stands for Hue-Saturation-Level, which is another way to define a color. Hue is just that
(moving the cursor left and right) saturation is the intensity (0 saturation produces shades
of grey) and level is the balance between white and black. (It moves the cursor up and
down.) These are also the arguments to the hsl command. I like maximum saturation
colors of medium level, so a numerical control of hue works most of the time. The $1
token in the message box is replaced by a number from Lcount to constantly shift the
cursor from left to right. Lcount gives me adjustable setps. I often use a swatch driven
this way by a random object to give unpredictable colors.

Object Size

Figure 9.

Figure 9 is another variant of figure 1. This time, I've used Lcount to animate the radius
of the circle. I'm also using frameoval to get an empty circle. When this patch is running
we see an expanding circle-- this can be located anywhere in the screen, with the origin in
the center.

Animation in jit.LCD

Peter Elsea 1/17/12 9

It's interesting to see what you get from this when the clear message is defeated: Figure
10 shows the results with various settings of step and color step. Large steps produce
concentric rings of course, and a step of 1 produces smooth transitions. The shading in
the third image is a moiré pattern produced by the interference of closely spaced lines and
the pixel grid and will shimmer when this is projected. If the image is allowed several
cycles of drawing there are interesting blends from adjacent bands of color. This is one
application where the odd penmodes can be interesting.

Figure 10. Drawng circles: step of 8, step of 1, step of 2 with pensize 1.

These images are similar to the effect generated by adding feedback, as shown in figure
11.

Figure 11.

Animation in jit.LCD

Peter Elsea 1/17/12 10

Multiple Objects

 Encapsulation
The oval drawing mechanism has been encapsulated for clarity in figure 11. (DrawOval2)
Figure 12 adds two features to the drawing mechanism. There is now a gate object in the
path of the bangs from qmetro (via receive tik2). I have shown this path with red patch
cords. The gate will pass bangs only when the toggle is set. When the toggle is cleared,
drawing will stop. The message 0 will clear the toggle, and that message is banged by
Lcount when it restarts at minimum count. The result is a single expanding bubble when
the toggle is set. A button makes this easy.

Figure 12.

The second addition is a pair of random objects to make the location of the bubble
unpredictable. Random will generate some integer less than its argument each time it is
banged. The random 320 will produce something suitable for the X coordinate if 160 is
subtracted (this is a center origin patch). That will change the value in the number box. Y
is treated the same way. These random objects are triggered by the start button just before
the toggle is set-- that results in one bubble popping up somewhere in the window.

Note that the random objects are to the right of the gate mechanism. This ensures that the
new coordinates are calculated before the gate is turned on. In fact, the new random X
value will trigger a draw, which is why lcount is set to stop on 0 (the shutoff bang
originates at the left outlet). That draw operation will have a radius of 0 and won't show.

Figure 13 Shows a further encapsulation

Animation in jit.LCD

Peter Elsea 1/17/12 11

Figure 13.

Figure 13 is entirely self-contained. A bang at the inlet will begin the drawing process,
which can be modified remotely with sends for step, radius and color step. The point of
this is to build an array of these subpatchers, titled drawBubble in figure 14.

Animation in jit.LCD

Peter Elsea 1/17/12 12

Figure 14.
The individual bubbles are triggered by banger, an Lobject that rotates a bang through its
outlets. Since each drawBubble only issues one command per frame, you could use quite
a few of them.

Multiple Objects with Poly~
When a patch is built of many copies of a single subpatch, the overpatch can be
simplified by the use of poly~.2 Poly~ is mostly used in MSP, where it encapsulates
synthesis voices to build polyphonic instruments, but it works with any kind of code.
Poly~ is a wrapper that can contain as many copies of a subpatch as desired. (See
Working with poly~ for details.) The first step to using it is to create a patch out of the
subpatch and save it like Figure 15.3

2 That's poly~ with a tilde, not to be confused with plain poly.
3 Some folks call a saved subpatch an "abstraction".

Animation in jit.LCD

Peter Elsea 1/17/12 13

Figure 15.

Figure 15 is the same as the drawBubble subpatch except for the added objects, which I
have marked in red:

• The in object will make an inlet appear in the poly~ that owns this patch. The
argument is inlet number.

• The out object is similar, creating an outlet.
• Thispoly~ is the connection to the owning poly~ for various messages. Most

importantly, a valueof zero indicates the subpatch is idle and available to generate
a new note or figure. (A non-zero value indicates the subpatch is busy.)

Another change to this patch is I have doubled the resolution. All 320s have become 640s
and all 240s are now 480. That also applies to the contents of drawOval2.

All that is needed to make bubble work is the mechanism in figure 16.

Figure 16.

The poly~ object takes two arguments: the name of the patch to enclose and the number
of instances needed. In this case bubble will be loaded 36 times, so 36 expanding circles

Animation in jit.LCD

Peter Elsea 1/17/12 14

can be displayed at once. The output of poly~ will be the combined output of all of the
enclosed instances of bubble.

There are several ways to communicate with the enclosed patches. Target is the most
flexible. Each instance of the enclosure has a number. The message target n makes
instance n the target of any following messages. In the case of bubble, all that is required
is a bang. (Remember, a message box with a comma sends two distinct messages.) The
counter in figure 16 will step through all 36 of the bubble patches fast enough to keep the
screen filled with color.

Figure 17.

Figure 17 shows the owing patch. I have replaced the jit.pwindow with a jit.window
object for the higher resolution display. I have also added the ability to expand the
window to full screen, controlled by the escape key. The mechanism for this is in the
subpatcher wincontrol, shown in figure 18.

Figure 18.

Animation in jit.LCD

Peter Elsea 1/17/12 15

Figure 19.

Figure 19 is the output.

