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Vectors	  

Basics of vectors 

 
Figure 8. 
 
A vector is a number pair that describes a spatial relationship. Vectors may be 
polar or Cartesian, although the latter are more common.  They are usually 
defined by two numbers1, which describe how the vector looks if it starts at the 
origin. The numbers are then the x and y coordinates of the point. Vectors may 
be labeled by a letter (generally upper case), A letter under an arrow, or two 
letters with or without an arrow- in that case the vector AB is the vector from 
point A to Point B. Vectors may also be indicated by the coordinates in a pair of 
brackets, either as a row or a column. 
 

      
 

 
 
You can think of the space defined by a vector as a path to travel, so a vector 
defines a direction and distance2. The distance or length of the vector is the 
magnitude. It can be easily calculated by the hypotenuse formula. Magnitude is 
often indicated by |A|. The tangent of the angle of travel is the ratio of the X and 
Y coordinates, so the angle can be found by the arctangent. In fact, this is just the 
Cartesian to polar conversion. 
 

                                                
1 Or three or more, we'll come to that in a bit. 
2 A vector has the same semantic meaning as "three miles north". It's a concept we understand, 
although it's not much use until we know where to start. 
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Keeping the association of motion and vectors in mind tells us how (and why) to 
add vectors. The result should tell where we wind up, it is as if one vector were 
stuck at the point of the other: 
 

 
Figure 9. 
 
The new X coordinate is the sum of the vectors' X and the new Y coordinate is 
the sum of the vectors' Y. These points define a new vector, of course, and you 
can draw it in if you like. 
 
Simple addition accounts for 90%  of our work with vectors. Vectors are used to 
represent anything that has magnitude and direction. Forces, velocity, stock 
market trends, line art in Illustrator and so on. Vectors work in three dimensions 
if we just add a z component. The magnitude becomes sqrt(X2+Y2+Z2). 
Everything else is the same. 
 
There are times when we use a vector to define a direction, such as the axis of 
rotation for a 3D object. In that case we think of the magnitude as infinite 
(defining a line) or we set it to 1. This is called a unit vector. 
 
A line segment is similar to a vector-- it is the line between two points. The line 
from point A to point B is often called line AB. Both A and B are defined by 
coordinates. You can convert a line segment to a vector by subtracting the start 
from the end. A line can also be represented as a starting point and a vector. In 
that case the form is P+uD, where P is a point, D is a unit vector and u is the 
length of the line3. 
 
When we are dealing with objects scattered around a coordinate system, it is 
often handy to translate the coordinates so our starting point is 0,0. This is done 
by subtracting the global coordinates of the starting point from all of the 
coordinates we will work with. When we are done, we need to add those values 
back to the results. 

                                                
3 This form is called parametric notation. A lot of sources use t instead of u. 
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Putting vectors to work. 
A little knowledge can be dangerous, but the properties of vectors covered so far 
can be quite useful in Max & Jitter patches. In particular, vectors can be used to 
control motion in the GL world. 
 

 
Figure 10. 
 
Figure 10 shows a simple 3D window, with a single sphere generated by 
jit.gl.gridshape. We will use vectors to put the sphere in motion. 
 

 
Figure 11. 
 
Figure 11 shows the mechanism for drawing the ball. This is contained in a 
subpatch named draw_ball. The current location is held in an llist object. For 
each new frame this list is sent to an Ladd object containing a vector that defines 
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the motion4. The result is used to position the sphere and is sent back to the top 
llist object for the next frame. You can easily see how the sphere would move. If 
the Ladd object contained the motion vector 0.1 0. 0., successive frames would 
produce positions of: 
  
0. 0. 0.  
0.1 0. 0.  
0.2 0. 0.  
0.3 0. 0.  
and so on. This would move the sphere to the right. 
 
Figure 12 shows one method for creating the motion vector. 

 
Figure 12. 
 
The top object in Figure 12 is a pictslider. It is an X-Y controller which produces a 
pair of numbers that range from 0 to 127. The scale subpatch remaps these to the 
range of -1 to 1. This is done with a pair of expr objects containing $f1/127. – 1. 
(It would be very simple to connect a physical joystick here—see the controllers 
tutorial.) The X and Y values are packed into a vector along with Z.  This vector 
is  divided by 33.3 to convert the values shown to gl units per second.  
 
The send (s vector) object sends the vector to the mechanism shown in figure 11. 
When the control in the pictslider is moved from the center position, the ball will 
move in the direction indicated, with a speed proportional to the distance the 
slider is from the center. 
 
 

                                                
4 Physicists call this vector velocity. Velocity is speed and direction, perfect for vector 
representation. 
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Figure 13. 
 
Figure 13 shows the output of a more complex patch. When this is running, the 
blue ball bounces around inside the box. If we like, the ball will gradually slow 
down and come to a halt, and we have the further option of turning on gravity to 
make the ball settle on the box bottom. 

 
Figure 14. 
 
Figure 14 shows the master patch. The essential functions are encapsulated: 

• GL context contains the usual window and render objects needed for any 
jit.GL display. 

• Draw_box contains a jit.GL.plato object that will generate a cube with 
poly_mode set to 1 1 so only the edges show. Note that the position and 
size (scale) of the box may be adjusted. 

• Move_ball calculates the motion vector for the ball. 
• Draw_ball draws the blue ball . 
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The Draw_ball subpatch is the same as figure 11. (This patch can be used to 
move anything) If the motion vector is fixed, the ball will move forever in the 
same direction. The core of the problem is to detect when the ball has moved too 
far. Figure 15 shows the move_ball subpatch. 

 
Figure 15. Move_ball subpatch 
 
There are two major vectors involved here. These define the current position and 
the current motion. This patch tests the current position to see if the ball is 
moving out of bounds. If so, the motion vector must be modified. 

 
Figure 16. 
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Figure 16 shows how the position is tested and the vector modified if necessary. 
There are three possible cases: 
 

1. X falls between the left and right limits and no change is needed. 
2. X is less than the left limit—the sign of the X component must be made 

positive. 
3. X is greater that the right limit—the sign of the X component must be 

made negative. 
 
The tests are performed by the < and > objects. (Note that the default test values 
can be changed if the bounding box is changed.) These objects report a 1 if the 
test is true and 0 if the test is not true. In case one neither test will be true, in the 
other cases, one or the other will be true. There is no condition where both would 
be true. 
 
The expression 1 + $f1 + 2*$f2 will add up to 1 if neither test is true as both 
comparison objects will report 0. If the left hand test is true the expression will 
add up to 2. If the right hand test is true the expression will yield 3. 
 
The X component of the motion vector is routed through a gate controlled by the 
top of the patch. If the component is sent from outlet 1, there is no change. If the 
component is sent from outlet 2, it passes through an abs object—this returns the 
absolute value of the X component. (Positive value) The expression on outlet 3 
does the same thing, but multiplies the result by -1 so the sign is guaranteed 
negative. 
 

 
Figure 17. 
The identical process is applied to the Y and Z components. 
 
The motion vector may be further modified by the actions shown in figure 17. 
• Friction will gradually reduce the velocity, so multiplying the motion 

vector by a value slightly less than 1 will slow the ball down.	  
• Gravity is also a vector (it has direction and acceleration). The motion of 

any object is always determined by the sum of the velocity vector and 
gravity vector. The result of a negative y component added to each frame 
is movement of the object toward the bottom of the box.	  

 
This simple use of vectors will produce interesting and realistic action within the 
GL world.
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Advanced	  Vectors	  
(Patches using these functions will appear eventually.) 
Sometimes we start with a vector that is not at the origin, as in B of the above 
drawing. Before we do any math on the vector, we must subtract the coordinates 
of the vector's starting point (vector origin). Sometimes we will see equations 
that include this operation with terms like Ax-A0 . The following operations 
assume the vector origin is [0 0].  

Scaling 
A number that is not a vector is a scalar. We can't add a scalar to a vector, but we 
can multiply them. 3 (a scalar) times [2 2] (a vector) is [6 6]. Each component of 
the vector is multiplied by the scalar. The operation is called (what else?) scaling. 

Dot Product 
We can multiply two vectors in a way that produces a scalar. This is the scalar 
product or dot product5. With a bit of geometry, I could show that A⋅B = 
AxBx+AyBy . I could also show that it is equal to the product of the magnitudes of 
the two vectors times the cosine of the angles between them. A⋅B = ABcosθ. This 
lets me find the angle between two vectors by 
θ = acos((Ax*Bx+Ay*By) / (sqrt(Ax*Ax+Ay*Ay)* sqrt(Bx*Bx+By*By))) 
 
For three dimensional vectors, the dot product is A⋅B = AxBx + AyBy + AzBz. The 
cosine formula still holds, but you need to use the z terms in calculating dot 
product and length.  

Normal 
A vector normal is another vector that is at right angles to the original. Some 
math books indicate the normal to vector A as . In two dimensions, the normal 
is easy-- you just exchange the coordinate values and change the sign of either 
one. (Any vector has two normals, in opposite directions.) So the normal to [2  4] 
is [4 -2]. We use the normal to define a direction, so the magnitude is not 
important. Any math involving the normal is simplified if we adjust the length of 
the normal to be 1. This is the unit normal, found by dividing each coordinate 
value by the magnitude. So to find the normal to a vector A: 
 
Nx = Ay/ sqrt(Ax*Ax+Ay*Ay) 
and 
Ny = -Ax/ sqrt(Ax*Ax+Ay*Ay) 
 
The dot product of a vector and its normal is always 0. The dot product of any 
pair of perpendicular lines is 0. 
                                                
5 Also known as inner product. 
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Cross Product 
We don't find the normal to a vector in three dimensions, we find the normal to a 
plane.  
Two vectors (and their origin) define a plane, and the normal to the plane is 
found by an operation known as the vector cross product.  The cross product6 is 
written with an 'x' for the multiplication sign  as  A x B = N 
 
Nx = AyBz - AzBy 
Ny = AzBx - AxBz 
Nz = AxBy - AyBx 
 
This operation is essential to determining how a vector is reflected from a plane. 
This is involved in lighting as well as modeling dynamics like a bouncing ball 
where the surfaces are not aligned to the axes.  

Intersection 

 
Figure 10. 
Given two line segments  AB and CD, find the point of intersection. 
First calculate a denominator as  (Dy-Cy)*(Bx-Ax) - (Dx - Cx)*(By-Ay). 
If the denominator is 0, give up, because the lines are parallel. 
 
Next  
Uab = ((Dx-Cx)*(Ay - Cy) - (Dy - Cy)*(Ax - Cx))/denominator 
Ucd = ((Bx-Ax)*(Ay - Cy) - (By - Ay)*(Ax - Cx))/denominator 
 
If 0 <= Uab <= 1 and  <= Ucd <= 1  the lines intersect. 
The point of intersection is: 
INTx = Ax + Uab*(Bx-Ax) 
INTy = Ay + Uab*(By-Ay) 
 

 
Figure 11. 

                                                
6 Cross product may be called outer product. 
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The intersection of a line AB and plane is a bit more complex. A plane is defined 
by three points, the origin, P1 and P2.7  The cross product of P1 and P2 is the 
normal, N.  
 
The vector of the line AB is (B-A). If (B-A) ⋅N = 0, the line does not intersect the 
plane. 
 
The intersection point X = A + (B-A)* (P1 -A) ⋅N/(B-A) ⋅N 
 
To find out if the intersection is within a specific polygon on the plane, consider a 
line from the point to a point on the plane known to be outside the polygon. Test 
this line for intersections with the edges of the polygon. If there are an odd 
number of intersections, the point is within the polygon. 

Reflection 
When modeling a bouncing ball, the reflections off of the top and ends of the 
frame are simple, we only need change the sign of one of the components of the 
motion vector. When the surface is angled, the situation is a bit more complex. 
First we must test that the vector and surface are intersecting as above. For the 
most accurate model, we will also need the point of intersection. 
 
First find the unit normal to the wall, N. The reflection R of the vector V is 
symmetrical about the normal. The formula that expresses that is 
R = V-2(V⋅N)N. 
 
That's a dot product in there, which produces a scalar, so the component by 
component math is easy 
 
Rx = Vx-2(V⋅N)Nx   
Ry = Vy-2(V⋅N)Ny 

Rz = Vz-2(V⋅N)Nz 
 
This works in either 2 or 3 dimensions. 
 
 
 
 

                                                
7 If necessary, translate the plane and line so one of the points on the plane is the origin. 


