
Trig Notes

Peter Elsea 2/15/12 1

Vectors	

Basics of vectors

Figure 8.

A vector is a number pair that describes a spatial relationship. Vectors may be
polar or Cartesian, although the latter are more common. They are usually
defined by two numbers1, which describe how the vector looks if it starts at the
origin. The numbers are then the x and y coordinates of the point. Vectors may
be labeled by a letter (generally upper case), A letter under an arrow, or two
letters with or without an arrow- in that case the vector AB is the vector from
point A to Point B. Vectors may also be indicated by the coordinates in a pair of
brackets, either as a row or a column.

You can think of the space defined by a vector as a path to travel, so a vector
defines a direction and distance2. The distance or length of the vector is the
magnitude. It can be easily calculated by the hypotenuse formula. Magnitude is
often indicated by |A|. The tangent of the angle of travel is the ratio of the X and
Y coordinates, so the angle can be found by the arctangent. In fact, this is just the
Cartesian to polar conversion.

1 Or three or more, we'll come to that in a bit.
2 A vector has the same semantic meaning as "three miles north". It's a concept we understand,
although it's not much use until we know where to start.

Trig Notes

Peter Elsea 2/15/12 2

Keeping the association of motion and vectors in mind tells us how (and why) to
add vectors. The result should tell where we wind up, it is as if one vector were
stuck at the point of the other:

Figure 9.

The new X coordinate is the sum of the vectors' X and the new Y coordinate is
the sum of the vectors' Y. These points define a new vector, of course, and you
can draw it in if you like.

Simple addition accounts for 90% of our work with vectors. Vectors are used to
represent anything that has magnitude and direction. Forces, velocity, stock
market trends, line art in Illustrator and so on. Vectors work in three dimensions
if we just add a z component. The magnitude becomes sqrt(X2+Y2+Z2).
Everything else is the same.

There are times when we use a vector to define a direction, such as the axis of
rotation for a 3D object. In that case we think of the magnitude as infinite
(defining a line) or we set it to 1. This is called a unit vector.

A line segment is similar to a vector-- it is the line between two points. The line
from point A to point B is often called line AB. Both A and B are defined by
coordinates. You can convert a line segment to a vector by subtracting the start
from the end. A line can also be represented as a starting point and a vector. In
that case the form is P+uD, where P is a point, D is a unit vector and u is the
length of the line3.

When we are dealing with objects scattered around a coordinate system, it is
often handy to translate the coordinates so our starting point is 0,0. This is done
by subtracting the global coordinates of the starting point from all of the
coordinates we will work with. When we are done, we need to add those values
back to the results.

3 This form is called parametric notation. A lot of sources use t instead of u.

Trig Notes

Peter Elsea 2/15/12 3

Putting vectors to work.
A little knowledge can be dangerous, but the properties of vectors covered so far
can be quite useful in Max & Jitter patches. In particular, vectors can be used to
control motion in the GL world.

Figure 10.

Figure 10 shows a simple 3D window, with a single sphere generated by
jit.gl.gridshape. We will use vectors to put the sphere in motion.

Figure 11.

Figure 11 shows the mechanism for drawing the ball. This is contained in a
subpatch named draw_ball. The current location is held in an llist object. For
each new frame this list is sent to an Ladd object containing a vector that defines

Trig Notes

Peter Elsea 2/15/12 4

the motion4. The result is used to position the sphere and is sent back to the top
llist object for the next frame. You can easily see how the sphere would move. If
the Ladd object contained the motion vector 0.1 0. 0., successive frames would
produce positions of:

0. 0. 0.
0.1 0. 0.
0.2 0. 0.
0.3 0. 0.
and so on. This would move the sphere to the right.

Figure 12 shows one method for creating the motion vector.

Figure 12.

The top object in Figure 12 is a pictslider. It is an X-Y controller which produces a
pair of numbers that range from 0 to 127. The scale subpatch remaps these to the
range of -1 to 1. This is done with a pair of expr objects containing $f1/127. – 1.
(It would be very simple to connect a physical joystick here—see the controllers
tutorial.) The X and Y values are packed into a vector along with Z. This vector
is divided by 33.3 to convert the values shown to gl units per second.

The send (s vector) object sends the vector to the mechanism shown in figure 11.
When the control in the pictslider is moved from the center position, the ball will
move in the direction indicated, with a speed proportional to the distance the
slider is from the center.

4 Physicists call this vector velocity. Velocity is speed and direction, perfect for vector
representation.

Trig Notes

Peter Elsea 2/15/12 5

Figure 13.

Figure 13 shows the output of a more complex patch. When this is running, the
blue ball bounces around inside the box. If we like, the ball will gradually slow
down and come to a halt, and we have the further option of turning on gravity to
make the ball settle on the box bottom.

Figure 14.

Figure 14 shows the master patch. The essential functions are encapsulated:

• GL context contains the usual window and render objects needed for any
jit.GL display.

• Draw_box contains a jit.GL.plato object that will generate a cube with
poly_mode set to 1 1 so only the edges show. Note that the position and
size (scale) of the box may be adjusted.

• Move_ball calculates the motion vector for the ball.
• Draw_ball draws the blue ball .

Trig Notes

Peter Elsea 2/15/12 6

The Draw_ball subpatch is the same as figure 11. (This patch can be used to
move anything) If the motion vector is fixed, the ball will move forever in the
same direction. The core of the problem is to detect when the ball has moved too
far. Figure 15 shows the move_ball subpatch.

Figure 15. Move_ball subpatch

There are two major vectors involved here. These define the current position and
the current motion. This patch tests the current position to see if the ball is
moving out of bounds. If so, the motion vector must be modified.

Figure 16.

Trig Notes

Peter Elsea 2/15/12 7

Figure 16 shows how the position is tested and the vector modified if necessary.
There are three possible cases:

1. X falls between the left and right limits and no change is needed.
2. X is less than the left limit—the sign of the X component must be made

positive.
3. X is greater that the right limit—the sign of the X component must be

made negative.

The tests are performed by the < and > objects. (Note that the default test values
can be changed if the bounding box is changed.) These objects report a 1 if the
test is true and 0 if the test is not true. In case one neither test will be true, in the
other cases, one or the other will be true. There is no condition where both would
be true.

The expression 1 + $f1 + 2*$f2 will add up to 1 if neither test is true as both
comparison objects will report 0. If the left hand test is true the expression will
add up to 2. If the right hand test is true the expression will yield 3.

The X component of the motion vector is routed through a gate controlled by the
top of the patch. If the component is sent from outlet 1, there is no change. If the
component is sent from outlet 2, it passes through an abs object—this returns the
absolute value of the X component. (Positive value) The expression on outlet 3
does the same thing, but multiplies the result by -1 so the sign is guaranteed
negative.

Figure 17.
The identical process is applied to the Y and Z components.

The motion vector may be further modified by the actions shown in figure 17.
• Friction will gradually reduce the velocity, so multiplying the motion

vector by a value slightly less than 1 will slow the ball down.	
• Gravity is also a vector (it has direction and acceleration). The motion of

any object is always determined by the sum of the velocity vector and
gravity vector. The result of a negative y component added to each frame
is movement of the object toward the bottom of the box.	

This simple use of vectors will produce interesting and realistic action within the
GL world.

Trig Notes

Peter Elsea 2/15/12 8

	

Advanced	 Vectors	
(Patches using these functions will appear eventually.)
Sometimes we start with a vector that is not at the origin, as in B of the above
drawing. Before we do any math on the vector, we must subtract the coordinates
of the vector's starting point (vector origin). Sometimes we will see equations
that include this operation with terms like Ax-A0 . The following operations
assume the vector origin is [0 0].

Scaling
A number that is not a vector is a scalar. We can't add a scalar to a vector, but we
can multiply them. 3 (a scalar) times [2 2] (a vector) is [6 6]. Each component of
the vector is multiplied by the scalar. The operation is called (what else?) scaling.

Dot Product
We can multiply two vectors in a way that produces a scalar. This is the scalar
product or dot product5. With a bit of geometry, I could show that A⋅B =
AxBx+AyBy . I could also show that it is equal to the product of the magnitudes of
the two vectors times the cosine of the angles between them. A⋅B = ABcosθ. This
lets me find the angle between two vectors by
θ = acos((Ax*Bx+Ay*By) / (sqrt(Ax*Ax+Ay*Ay)* sqrt(Bx*Bx+By*By)))

For three dimensional vectors, the dot product is A⋅B = AxBx + AyBy + AzBz. The
cosine formula still holds, but you need to use the z terms in calculating dot
product and length.

Normal
A vector normal is another vector that is at right angles to the original. Some
math books indicate the normal to vector A as . In two dimensions, the normal
is easy-- you just exchange the coordinate values and change the sign of either
one. (Any vector has two normals, in opposite directions.) So the normal to [2 4]
is [4 -2]. We use the normal to define a direction, so the magnitude is not
important. Any math involving the normal is simplified if we adjust the length of
the normal to be 1. This is the unit normal, found by dividing each coordinate
value by the magnitude. So to find the normal to a vector A:

Nx = Ay/ sqrt(Ax*Ax+Ay*Ay)
and
Ny = -Ax/ sqrt(Ax*Ax+Ay*Ay)

The dot product of a vector and its normal is always 0. The dot product of any
pair of perpendicular lines is 0.

5 Also known as inner product.

Trig Notes

Peter Elsea 2/15/12 9

Cross Product
We don't find the normal to a vector in three dimensions, we find the normal to a
plane.
Two vectors (and their origin) define a plane, and the normal to the plane is
found by an operation known as the vector cross product. The cross product6 is
written with an 'x' for the multiplication sign as A x B = N

Nx = AyBz - AzBy
Ny = AzBx - AxBz
Nz = AxBy - AyBx

This operation is essential to determining how a vector is reflected from a plane.
This is involved in lighting as well as modeling dynamics like a bouncing ball
where the surfaces are not aligned to the axes.

Intersection

Figure 10.
Given two line segments AB and CD, find the point of intersection.
First calculate a denominator as (Dy-Cy)*(Bx-Ax) - (Dx - Cx)*(By-Ay).
If the denominator is 0, give up, because the lines are parallel.

Next
Uab = ((Dx-Cx)*(Ay - Cy) - (Dy - Cy)*(Ax - Cx))/denominator
Ucd = ((Bx-Ax)*(Ay - Cy) - (By - Ay)*(Ax - Cx))/denominator

If 0 <= Uab <= 1 and <= Ucd <= 1 the lines intersect.
The point of intersection is:
INTx = Ax + Uab*(Bx-Ax)
INTy = Ay + Uab*(By-Ay)

Figure 11.

6 Cross product may be called outer product.

Trig Notes

Peter Elsea 2/15/12 10

The intersection of a line AB and plane is a bit more complex. A plane is defined
by three points, the origin, P1 and P2.7 The cross product of P1 and P2 is the
normal, N.

The vector of the line AB is (B-A). If (B-A) ⋅N = 0, the line does not intersect the
plane.

The intersection point X = A + (B-A)* (P1 -A) ⋅N/(B-A) ⋅N

To find out if the intersection is within a specific polygon on the plane, consider a
line from the point to a point on the plane known to be outside the polygon. Test
this line for intersections with the edges of the polygon. If there are an odd
number of intersections, the point is within the polygon.

Reflection
When modeling a bouncing ball, the reflections off of the top and ends of the
frame are simple, we only need change the sign of one of the components of the
motion vector. When the surface is angled, the situation is a bit more complex.
First we must test that the vector and surface are intersecting as above. For the
most accurate model, we will also need the point of intersection.

First find the unit normal to the wall, N. The reflection R of the vector V is
symmetrical about the normal. The formula that expresses that is
R = V-2(V⋅N)N.

That's a dot product in there, which produces a scalar, so the component by
component math is easy

Rx = Vx-2(V⋅N)Nx
Ry = Vy-2(V⋅N)Ny

Rz = Vz-2(V⋅N)Nz

This works in either 2 or 3 dimensions.

7 If necessary, translate the plane and line so one of the points on the plane is the origin.

