
DANM 220 Overview 2013

Peter Elsea 1/7/13 1

Topics for DANM 220 Winter 2013.
*Optional readings

Date topic Objectives Reading Assignment
Jan 7 Essential

Background
Coordinates, colors,
Define frame structure

Intro to Max,
Pre-jitter studies,
Messages and
structure*

Set up Max

Jan 9 Basic drawing Code structure,
functions,

Basic Drawing,
Drawing with
mgraphics*

Jan 14 Animated
drawings

The draw loop Simple
Animation

Random
drawing

Jan 16 Movie
munging

pixel color, color
processing

Dealing with
Movie, Gallery,
op spotter*, effect
spotter*

Jan 21 Holiday debugging
Jan 23 Compositing,

repos
Image combination
Image distortion

Compositing
Meet Repos*

Filter a movie

Jan 28 Drawing with
trigonometry

Function based images Trigonometry
Notes

Jan 29 Feedback
tricks

Iterative processing,
fractals, flamer

Feedback,
Fractals, Flamer*

triangle

Feb 4 Live video Video capture &
analysis

Zen Mirror*

Feb 6 object tracking Trigger events from
motion

Motion tracking,
net cameras*

Follow the
post-it

Feb 11 Sound Playback, capture,
MSP

Sound Playback

Feb 13 visualization Audio to image Visualization of
audio*,
Lissajous*

Visualizer

Feb 18 Holiday
Feb 20 Input Keyboard, mouse &

external devices
Controllers,
Firmata*

Work on
project

Feb 25 Output External control Firmata*, DMX ""
Feb 27 Networking Webcams, data mining Webcams* ""
Mar 4 The 3D world Intro to openGL OpenGl in Jitter* ""
Mar 6 Motion in 3D Vectors and collisions Vectors in jitter* ""
Mar 11 Optimization Gen, shaders Shaders in Jitter*
Mar 13 Wrapup
Mar 18 Crit Student projects

DANM 220 Overview 2013

Peter Elsea 1/7/13 2

Assignments:
Assignments may be done with Max or Processing. However, the lectures and sample
programs will be in Max. You may email completed assignments to elsea@ucsc.edu. You
may email me with questions at the same address.

• Random Drawing: create an image with some aspects based on chance.
• Filter a Movie: make a movie unrecognizable but interesting
• Triangle: create a program that builds layers of Sierpenski triangles
• Follow post-it: use findbounds to trace an object's motion.
• Visualizer: write a patch that responds to music.

To include a patch in an email:

1. Use Select All on the patch.
2. Choose Copy Compressed from the edit menu.
3. Paste that directly into an email.

If I send a patch to you, it will look like this:

<pre><code>
----------begin_max5_patcher----------
211.3ocSPsjBBCCDccxoHLqqhsXUvcdCDboHRZcrFIeJookhh2cal1ptYBuO
yjGuWbFT35wFPrSbRvXu3LFQEIXSXFXj8kZYCYCJcFCZCPxnV.6CD+QooVih
CxP48YQaqQY0Xf1Lch7lyFZTOQhKa4pedcsgYyyr27UED9qu53GnrUW7XYXL
3o4oCxhz04zSdzrHaXJNOsj5JkQWwiEYve4vJMTNf8dkTCQg2bdbPqBx55Nz
2nbVpQh8wPa7v4ivMIDTYGgT.AO1ol8ukGu1a9G.3F6TqC
-----------end_max5_patcher-----------
</code></pre>

Copy everything from <pre> to </pre> to the clipboard.
In Max, choose New from Clipboard.

DANM 220 Overview 2013

Peter Elsea 1/7/13 3

What exactly can a computer do for the artist?

• Art shown with projections and screen display.
• Control artistic contraptions.
• Change the audience experience with responsive systems.
• Generate a lot of variations on a theme.
• Surprise us.

The realities of the digital canvas.
The digital canvas is some sort of computer screen or a projection. The colors you get
will be somewhat different from model to model. (Imagine what kind of painting you'd
get if the color of the canvas kept changing.) In such a world, it is better to worry about
contrast and color range instead of a specific shade of teal.

Many projectors have a native pixel architecture that is different from computer screens.
Often it is actually different from the published specifications. Converting images with
differing architecture will require rescaling, which often introduces lateral lines or other
distortion. Distortion will be even worse if the aspect ratios do not match. You should be
prepared to resize your images if necessary.

The level of detail is limited by the screen resolution. It is also limited by the power of
the computer hosting your application. There are millions of pixels in a single frame of
video, and calculating a frame will take several machine cycles per pixel. All of a sudden
a billion operations per second does not seem very fast. Computers have both a CPU
(central processing unit) and GPU (graphics processing unit, generally part of the display
card.) The GPU is about a thousand times faster than the CPU, but it is often awkward to
use. For instance, GPU programming is done in a different language. (We can program
the GPU in Max, but not in processing.) In all cases there is a tradeoff between resolution
and time.

The time/resolution tradeoff means the frame rate is often less than the optimum 30 fps.
We usually don't notice until the rate goes below 20 fps, but our perception change is
sudden. This happens at different rates for different people. Slow rates may be tolerated
for images that don't change much.

The third dimension.
The world has become accustomed to very real 3D images from features like "Finding
Nemo" and "Avatar". Of course those are produced on render farms with 1000 machines
producing a few minutes a day. A more realistic goal is game level realism. That means
simple textures, less subtlety in lighting, and so on.

DANM 220 Overview 2013

Peter Elsea 1/7/13 4

We specify 3D images through a language called openGL. Both Max and processing
support openGL, and try to help with the more tedious aspects of working in that
language. Max 6 offers important improvements in game style graphics.

Image and sound.
Our works of art need not be silent. Processing will allow cued playback of recorded
material and samples, as well as some elementary synthesis. Max/MSP is a full fledged
synthesis and DSP environment. The two can coexist and communicate, so using
Processing for images and Max for sound is perfectly feasible. Either can also
communicate with most audio platforms such as Reactor, Supercollider, ChucK and
Csound. Max can host your choice of plug-ins.

Creating images out of sounds is also feasible in either language.

Transformation of pixels
A lot of video art is based on transforming existing video footage. At one time there were
modular video synthesizers to complement the more famous Moog and Buchla music
synthesizers. These performed processes like threshold switching and slew limiting, all
things that can be done with an analog image waveform. In digital video processing, it is
the color of pixels that is modified. The modifications can be based on several things. For
instance, if there are two video sources, the color of a pixel may be compared to a
specified color. If they match, the output is taken from the second source. Otherwise the
first source is passed through. Thus everything colored green in the A signal is replaced
by colors from the B signal. In other processes, the color used for a pixel may be taken
from a different pixel in the original image. This can change the size of an image, or
twist it in arbitrary ways.

Algorithmic drawing
Tools like Illustrator let us use the computer as a canvas, transferring ideas from our head
to the screen. Max and Processing move some of the decisions to the computer. All we
have to do is invent rules for the computer to follow. The rules are necessarily based on
mathematics, but the math need be no more complex than what's needed to balance a
checkbook. One beauty of algorithmic drawing is the rules are controlled by parameters
supplied by the artist. This means many images can be made from the same algorithm.

• Geometry produces straight line figures. You can do a lot with straight lines,
especially if they make up tiny rectangles. The underlying concept is the vector,
but that is only an instruction of where to draw.

• Trigonometry produces curves. These curves are defined by angles and functions
based on the angles. These functions are deep math, but the computer will
perform them for us.

• Iterative function systems apply functions to input, then apply the same function
to the results. When we get an image we like, we quit. This kind of thing can
produce remarkable images including plants, mountain ranges and snowflakes.

DANM 220 Overview 2013

Peter Elsea 1/7/13 5

• Chance operations inject random parameter values into a process so each run
produces a different image.

• Path based graphics work from a script of drawing instructions similar to the
actions available in Illustrator or other vector drawing programs.

Dynamic Drawing
Computer art does not have to stand still. If we use time as parameter the image can be
redrawn with subtle changes or drawn fast enough that the eye is fooled into perceiving
motion.

• Loops perform the same pattern of operations over and over again. This produces
simple animation or a painting that follows the time of day.

• Physical models follow some of the rules of the real world. This produces action
like bouncing balls or growing vines. This also includes chaotic systems with
repeatable but surprising behavior.

• Particle-systems take modeling down to the molecular level. They can be used to
create fire and smoke and flocking birds.

Noticing the world
Computer programmers often speak of real time. This is code that runs fast enough that
response seems simultaneous with input. Even if there is noticeable delay, an art program
can respond to changing environment or requests by users (whom we define as someone
who is operating the program, but did not write it). This input takes many forms:

• Camera input captures images. These images can be used as source material for
image processing or analyzed to provide control parameters for the program.

• Physical sensors can detect practically anything. We can build a system that is
played like a violin or tracks the humidity over several days.

• Network links expand the input range to include a large part of the world. Again
the foreign data can provide raw material or control. We can also use networks to
remotely control our art by arbitrary gestures like tipping an iPhone.

Controlling the world
The program output is not limited to images on a screen. Anything that is electrical can
be controlled, either directly from an Arduino style circuit or a standardized network
protocol. A program can generate instructions to a performer or mechanic or another
computer program. Some very powerful protocols available to us include:

• MIDI Originally a system for transmitting musical performance, MIDI has been
expanded into surprising areas, such as lighting control.

• DMX is a control system for theatrical lighting systems.
• Open Sound Control or OSC. Another musical system, with more power at the

expense of less generality.
• RTSP lets us receive or transmit images over the internet.

DANM 220 Overview 2013

Peter Elsea 1/7/13 6

The Way of Code
The only true mastery of a computer comes through the ability to write code. When we
use canned software, we are bound to a certain world view, accepting the priorities and
paradigms of the software's author. With millions of programs available, it seems we
should be able to find something that matches our needs and methods, but we soon
realize the search takes longer than the task, and we settle for anything that will (sort of)
get the job done.

It is absurd to consider writing any application from the ground up. Fully formed
applications require complex operations for screen display, file storage and retrieval,
communications and numerous other functions. These problems have been solved again
and again-- tackling them is a waste of our time. Instead, we build on other's work,
adding our code to a framework of routines that satisfy the standard needs. We will work
with one of two frameworks:

Max/MSP/Jitter lets us assemble complex programs from building blocks of working
code. The process seems something like Legos at first. As with Lego building, you are
limited to the objects already provided, and these objects force a certain overall shape.
However, there are so many objects available that just about anything can be done within
the system. Unlike Lego, it is possible to invent new objects. There are enough people
doing this now that Max has reached a critical mass, and the possibilities are expanding
faster than any one person can reach the limits.

Processing provides a nearly complete application called a sketch. It is your job to
complete the application by writing two or three unfinished sections of code. The result is
a Java applet, suitable for adding to a web site or running an installed art work. The scope
of Processing is not limited to computation and screen display. It can generate audio and
MIDI or communicate with Arduino to control external hardware.

Both languages provide an ever-expanding set of capabilities and have ample resources
for learning and discovery. Each has an impressive on-line community willing to give
advice to the newcomer (after the basic manuals have been read, of course) and provide
advice for advanced projects. There are fine books of instruction and vast libraries of
examples.

The standard approach to writing code
The traditional development process goes through a series of logical steps, the same steps
necessary to many complex undertakings. They are specification, design, coding and
testing.

Specification
An application begins with a problem to be solved or an operation to be performed. The
more precisely the problem or operation can be defined, the easier the code will be to

DANM 220 Overview 2013

Peter Elsea 1/7/13 7

write. It is possible to change your mind, to add features or remove them, but the later
this happens the more wasted work. Changing specs midway can also lead to internal
inconsistencies that will wreck the entire program. Specification is not as formal or
complex as it sounds. It's just a list of inputs and outputs with a description of how they
relate. If you think of it an instruction manual, it becomes a much less academic
undertaking.

Design
Design is the creative phase, the invention of algorithms to get the work done. A lot of
these algorithms have already been invented, so your first task is to research the field and
find them, or something close enough to be modified. Resist the urge to write code during
the design phase, except little experiments to test something. The result of the design
phase is a flow chart showing how one action leads to another. Make sure every input and
output in the specification is included.

Coding
Writing code is the tedious part of the process. If you work in Max, the code resembles
the flow chart. In Processing, every object in the chart is represented by a paragraph of
code that defines a function and the structure is defined by calling functions in the draw
routine. Coding is made difficult by the terse vocabulary and rigid syntax of Processing
or the subtle gotchas and annoying inconsistencies of Max.

Testing
Testing actually begins as soon as there is enough code to test. If the flow chart is
complete, the input and output of the functions will be clear enough to try each out as
they are written. Once the whole thing is operational, give it to someone else. It will
immediately break. Find out how your tester broke it and figure out the problem. Repeat
the process until your tester cannot break it. It is tempting to test it yourself, but you will
be amazed at how your intimate knowledge allows you to subconsciously avoid
dangerous operations.

DANM 220 Overview 2013

Peter Elsea 1/7/13 8

Revision
Testing and use will inevitably lead to revisions of the program. When you do this, don't
just jump in and modify code. Go back and change the specifications, then see how wide
ranging the effects of the change will be.

Documentation
The initial specification can be revised into instructions for using the program. You
should also include comments in your code that describe the operations of each section.
Make these clear enough for a stranger to understand1.

The artist's method for writing code
We aren't in it for the money, so we don't really need to worry about efficient production
strategies or meeting customer's specifications. In most cases, all we want to do is
produce something beautiful and surprising. This means we don't need to obsess about
"correct code", it just needs to run. So the coding process for art can be more free-
wheeling (although you can do the other way if you want to.) Art coding is based on
playing, stealing, modifying existing code, critique, and yes documentation.

Play
The first thing to do is get comfortable with the code world. You don't need to learn it all
at once--all you really need is enough knowledge to get output in a usable format. We'll
go through a lot of examples together, and if some process seems interesting, play with it
enough to see where it takes you. Go ahead and try things that don't make sense. Some of
my favorite pieces come from mistakes and foolishness.

Steal
Since the art is the results of our programming efforts, and not the code itself, we are less
bound by the issues of patents and copyright2 that plague the computing world. When
you see something by another artist that intrigues you, see if you can figure out how they
did it. Then play with that process and see what you can produce.

Modify
Never settle for the first version of anything. Your first try at a process may give
awesome results, but a slight change may make it even better. Keep copies of all
versions-- some paths may be a blind alley, but if we back up a bit and try different
variations, we may find even neater things.

1 That stranger is you, in about 6 months.
2 Of course, we have our own copyright issues, but they are more straightforward.
Somebody may own the copyright for an image of a person, but no one will ever patent
2 Of course, we have our own copyright issues, but they are more straightforward.
Somebody may own the copyright for an image of a person, but no one will ever patent
the idea of portrait.

DANM 220 Overview 2013

Peter Elsea 1/7/13 9

Critique
Once you have output, look at your work, and decide how it rates. There are three
possible categories: something you were looking for and can use now, not what you were
looking for but still useable in another context, and learning experience. The criteria that
put the work into these categories are your own, but after enough exposure to other
works, you should be able to develop a sense of how others will react.

Documentation
Boring as it is, we have just as much need for documentation in the art business as in any
other programming field. There is no worse feeling in the world than being asked to do
some more of what you produced two years ago and having no idea how you did that.
Keep a notebook.

DANM 220 Overview 2013

Peter Elsea 1/7/13 10

What Programmers Really Do
I mentioned earlier that no application is ever written from scratch. The basic functions
that load files, connect to the internet and so forth are all supplied as part of the operating
system. Furthermore, if you are programming for Windows or Apple computers, you
have thousands of utility routines to do things like manage window display and text
editing. Coding in those environments is mostly research-- I often spend a day of manual
reading to write one line of code, but what that line does is amazing. For instance, in Mac
OSX, there is a function called NewMusicPlayer. This creates everything needed to play
a multitrack MIDI sequence. Once this is done, it only takes a few more lines of code
(with equally powerful functions) to load a sequence and play it.

If a programmer needs something that is not supported directly in the OS, the code may
be available in a library somewhere. Libraries are sets of routines that address common
problems. Once a programmer (or company) has written code that works well, they are
often willing to share (or make some extra $$). For instance, a search for "fractal fern
code" returned 132,000 hits. If I wanted to write a fractal fern routine, I need look no
further. In addition to this, there are hundreds of textbooks that consist of nothing but
examples of code. "Fractal programming" turns up 14 pages of books on Amazon.

Working coders also take advantage of application frameworks. Frameworks are nearly
complete applications- sort of DIY kits for code. There are a few hundred of these. Max
and Processing are frameworks, as are Flash, MacFlux and Mathematica. Frameworks
may be extensions to an existing language (Processing is an extension of Java) or
something completely unique like Max.

All of this means programmers don't often get to invent things, most applications are
paste-ups of existing code. Of course, they do need the knowledge necessary to
understand how things fit together.

