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Fractals in Max and Jitter 
Simple iterative process 
Fractal geometry is the study of objects that have a property known as self-
similarity – They are made up of smaller copies of the overall shape. One of the 
most popular is called the Sierpinski triangle: 
 

 
Figure 1.  
 
It is traditionally made by starting with a solid triangle and removing smaller 
and smaller triangles. This is awkward to program, but there's another way to 
generate them that is simple and fun to watch. 
 
The process goes like this: 
1. Plot the three corners of the triangle. 
2. Pick an arbitrary starting point (not one of the above) 
3. Randomly choose one of the corners. 
4. Plot a new point halfway between the previous point and the corner. 
5. Repeat steps 3 and 4 a couple of thousand times. 
 
What's going on? Well, we are finding points halfway between the last point and 
random corners of the triangle. So if you start outside the triangle, the points will 
be inexorably pulled into the triangle, and once inside, can't get out. If you start 
from a point inside the triangle, you will never land in the central hole, because 
all points in there would have to be derived from a point outside the triangle. If 
you look at the process backwards for a moment, you'll see what I mean. If there 
can be no points in the central hole, well, anywhere halfway between the hole 
and the corners is excluded as well. 
 
With other divisions of the line, you get related but different pictures, like Figure 
2 
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Figure 2. 
The triangle begins to break apart because the exclusion zone is larger. These 
figures can also be drawn with more corners as shown in figure 3. 

 
 
Figure 3. 
 
What is the area of something like this? Well, in the ideal version, unlimited by 
printing resolution, every pentagon is missing a pentagon of 1/6th its area, in an 
infinitely diminishing series. That means its area approaches zero. It's really a 
very complicated line. What is the length of the line? Following all infinitely 
small twists and turns, the length approaches infinity. Since it has no area, it is 
not a two dimensional object, but it has length, so it is more than one dimension. 
Its dimension is some fraction between one and two, which is why it is called a 
fractal. 
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Generating the triangle 
We can generate a Sierpinski triangle in the jit.lcd object. For every point we plot, 
we'll call paintrect to draw a square one pixel on a side. Figure 4 is a basic patch 
that will draw any manner of forms, depending on what is in the subpatch just 
below the metro. Points produced by the subpatch will be defined as a list of  
X,Y,X,Y,R,G,B. The X and Y coordinates are repeated so the outer patch can set 
the origin and size of the squares.  
 
The subpatch iwill use X =0 and Y = 0 as the center of the image. The Ladd object 
will center the image in the display and set the rectangle size to 1. The paintrect 
command does the drawing, and the qmetro sends matrices out for display. 
 

 
Figure 4. 
The fractal generation is in the sierptri subpatch shown in figure 5. All points are 
managed as lists of the X and Y coordinates. The corners of the triangle are 
created randomly when the patch is loaded or the new button clicked. When the 
left inlet is banged, the current point is loaded into the halfwaythere subpatcher. 
Then one of the corners is sent to the left inlet for the calculation. The calculation 
appears in figure 7. 
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Figure 5. The sierptri subpatch. 
 

 
Figure 6. The corners subpatch 
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Figure 7. The halfwaythere subpatch. 
 
To find a point P in the middle of a line from A to B you simply move half of  the 
difference in X and half of the difference of Y.  
 
This patch can be generalized to make symmetrical figures of n corners. The 
corners will be specified in polar coordinates evenly distributed around a circle 
of fixed radius. Figure 8 shows the inner workings. (The outer patch is much the 
same as figure 4.) 
 

 
Figure 8. 
When a bang arrives, the random number is multiplied by an angle equal to 2π 
divided by the number of corners. (I subtract 1.57 from this to place the 0 angle at 
the top.) This is dropped into a subpatch with one difference from figure 6. The 
multiplier is adjustable. 
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Figure 9. 
 
Figure 10 shows some shapes derived from this patch. 
 

  
 N= 3    S = 0.5   N=4   S = 0.56 
 

  
 N = 5   S=0.62   N=5  S=0.7 
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 N= 6   S = 0.7   N= 13   S= 0.75 
Figure 10. Symmetrical fractals. 
 
You can see that as the number of corners increases, the shape quickly becomes 
circular. It is also necessary to increase the separation coefficient to keep the 
shape clear. If the coefficient is low, the result is a chaotic doughnut or splotch as 
shown in figure 11. 
 

    
N=70 S= 0.9   N=70 S=0.5   N=70   S=0.1 
Figure 11. 
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The Koch Snowflake 
The Koch curve is another popular fractal shape. It is made by taking a line, 
dividing that line into thirds, then adding another segment to make a peak in the 
shape. Once this is done, repeat for each segment. Figure 12 illustrates. 
 

 
Figure 12. The Koch curve. 
If you start with an equilateral triangle, you get the Koch Snowflake: 
 

 
 

 
Figure 13. Five iterations of the Koch Snowflake 
 
After five iterations, the shape begins to challenge the resolution of the window. 
Figure 14 shows a patch that creates Koch Snowflakes.  
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Figure 14. Koch patch 
 
This is a basic lcd drawing patch that uses linesegment as the drawing command. 
Linesegment requires four arguments to represent the beginning and end points. 
The seed list contains three sets of arguments separated by commas. This 
produces three messages to start things out. The action happens in the breakline 
subpatch which produces four segments for each segment fed in. 

 
Figure 15. The line breaking challenge.  
 
Figure 15 illustrates the problem. The input is a segment AB. Point C is one third 
the distance from A to B, and point D is two thirds the distance. The math for 
finding these two points is simple vector algebra: 
 
Cx = 0.33*(Bx - Ax) + Ax; 
Cy = 0.33*(By - Ay) + Ay; 
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Dx = 0.66*(Bx - Ax) + Ax; 
Dy = 0.66*(By - Ay) + Ay; 
 
Subtracting Ax from Bx is an example of translation. We momentarily shift the 
origin of our Cartesian grid to be at A. Then the math works properly no matter 
which way the line actually points. (We must remember to add A back in when 
the math is done.) Figure 16 shows how  the breakline subpatch does this. 
 

 
Figure 16. Inside breakline. 
 
The only thing tricky about this patch is ensuring that the segments are output in 
the correct order1. The lline objects capture each result and hold it until the 
trigger object lets them go. With an input of AB, the required output is AC, CE, 
ED and DB. 
 
The Lobjects allow us to process the X and Y coordinates of each point in a single 
object, which keeps the patch cord count down.  (I've colored them to clarify the 
action.) The first step is to load the point A (red) into the Ladd object at the 
outlet-- this will undo the translation. Note that the coordinates of A will be 
added to both points of each segment. Next, [Lswap 2 3] and the following Lsub 
produce the A-B term that is in all of the calculations. This is distributed via the 
blue lines. An Lmult creates point C (orange) which is packed into the first 

                                                
1 That doesn't actually matter here, but it will when we use this subpatch in 
openGL. 
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segment. Since A is added to both points in the segment, the first two values in 
the pack must be 0. Point C will also be used in the second segment. Point D 
(green) is constructed and distributed to the third and fourth segments in a 
similar manner. B-A will complete the fourth segment. The only thing 
unaccounted for is point E. This has its own subpatch, shown in figure 17. 
 

 
Figure 17. Constructing point E. 
 
The centerpoint subpatch does another translation of origin, this time to the 
coordinates of C. Then the coordinates of D relative to C are converted to polar 
form, rotated 60°, converted back to Cartesian, and translated back to the original 
coordinate system2. Note that the rotation is done by an addition. We will play 
with this a little later. 
 
Back in figure 15, the output of centerpoint is point E (teal), needed for the 
second and third segments. Once this is in place, the trigger object sends 
everything out to the master patch. Figure 14 shows the output from a single 
pass through the breakline subpatch. 
 
The shapes of  figure 13 are created by adding more copies of breakline. It would 
be possible to build a system to run the results of breakline through the same 
object several times, that would be more complex that just copying the object. 
This system only needs five or six iterations at the most. If you like, you can add 
a gate to control the number of times the process is applied. This is illustrated in 
figure 18. 
 
 
 
 
 

                                                
2 Which you will remember is relative to A. I know this seems convoluted, but it 
is far simpler than any other approach. 
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Figure 18. Multiple iterations of breakline. 
 
Variations on the snowflake can be created by changing the rotation performed 
in finding point E on each segment. If the angle addition is changed to a 
subtraction, the points will break into the body instead of out. This creates a 
completely different set of images. 
 

  

  
Figure 19. 
 
Alternating direction produces even more variations: 
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Figure 20. 
 
As will other combinations and overlays without clearing: 
 

  

  
Figure 21. 
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Sierpenski Carpet 
Sierpenski's carpet is similar to his triangle. 
 

 
Figure 22. 
 
The result is similar, but the algorithm is quite different.  

• Start with a black square. 
• Punch a 1/3rd size square hole in the middle. 
• Add holes surrounding the big hole, again reduced by 1/3rd. 
• Surround those holes with... 

 

     
 
Figure 23. 
As with the triangle, the area is nearly 0 and the length of the edge is nearly 
infinite. Figure 24 shows how this is done with a Max patch: 
 



Fractals in Max 

Peter Elsea 1/31/12 15 

 
Figure 24. 
 
The right side of this patch shows a basic drawing mechanism—if a list of left, 
top, right and bottom coordinates is received in the r(eceive) corners object a 
white rectangle will be painted with the coordinates relative to the center of the 
window. The actual calculation of the coordinates is done in the various cuthole 
subpatches figure 25. (Note the list of coordinates at the top of figure 24 —this 
starts the process with the size of the window.) 

 
Figure 25. 
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The first thing that happens in the cuthole subpatch is in another subpatch, 
innerSquare (figure 26.). Innersquare is fed the list of coordinates that represent 
the corners of the window, or area available for drawing. The expr objects 
calculate a new set of coordinates set in by 1/3rd from each corner of the area 
input. Note that some of the expr object have four inlets, but only use three of 
them. The results of innerSquare are sent to the receive corners object to paint the 
inner square. The results are also joined to the original input to create a master 
list of outer_Left , outer_Top, outer_Right, outer_Bottom, inner_Left, inner_Top, 
inner_Right, and inner_Bottom. These are fed to a set of Lswap objects. Lswap 
reorders lists according to the arguments. The first with arguments 0 5 4 7 
defines a square consisting of  outer_Left, inner_Top, inner_Left and 
inner_Bottom. That defines a region above and to the left of the inner square. 
There will be eight such regions output from this subpatch. 
 

 
Figure 26. 
 
What happens to these new regions? They are applied to an identical cuthole 
subpatch which paints a white square for each.  If the exprs are enabled (note the 
gate object connected to an external toggle), a further 8 lists are created for each 
list in. That is 64 lists at this point. The process can continue until the rectangles 
are only one pixel across. After all that is needed is the innerSquare subpatch to 
paint the 4096 tiniest squares. 
 
Since this system just generates corner points, it can easily be adapted to draw 
anything in the holes. For instance, figure 27 uses picts. The modifications 
required to paint a pict called drawme are shown in figure 28. 
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Figure 27. 
 

  
Figure 28. Modification to figure 24 and contents of fixwidth. 


