Fuzzy Music in Lisp

Fuzzy Music in Lisp

The file fuzzy music.lisp contains functions that build on those in fuzzy lisp to apply
fuzzy procedures to musical problems.

Basics

The use of fuzzy logic for music depends on using sets to represent familiar music
objects. This is not the usual music "set theory"-- when I need that kind of set, I'll call it a
pitch list. The set I mean is an ordered set on the universe of pitch class. It's a list of 12 Os
and 1, where a 1 indicates the inclusion of a pitch in the set.

Thus {1000000000 00} is a single note, C.
{10001001000 0} is a C major traid.
{10101101010 1} is a C major scale.

These sets are transposed by rotation to the right. If I rotate a set right by 2, the last two
elements of the set are pasted in front.

Thus {100010010000} becomes {001000100 100}, which is a D major
triad.

This gets fuzzy when values other than one are used in the list. For instance, the set
{000 109000000 0} represents an interval of a third up. There are two non zero
members because there are two kinds of third. To find a note a third above D, that set is
rotated two steps and intersected with the active scale:

{000 1090000000} ;; start with a third above

{0000010900000} ;; rotateto D

{101011010101} ;; intersect (fuzzy intersection is the minimum values)
{000001000000} ;;thisisanF

Likewise {0000000.910.800 0} represents a fifth above. The relative weights of the
tritone and augmented fifth represent a preference for one over the other. In use, these
values may be adjusted to fit the situation. To find a fifth above a D:

{0000000.910.800 0} ;; a fifth above

{000000000.910.80} ;;rotate to D

{101011010 10 1} ;; intersect (spaced to match the line above)
{000000000 10 O} ;;thisisanA

To build a chord, we take the union of the note, the third above the note and the fifth
above the note.

Peter Fleea 6/30/09 1

Fuzzy Music in Lisp

Functions for Fuzzy Music

Constants
The following fuzzy sets for musical structures are defined in fuzzy music.lisp:

(defConstant *FZ-NOTE* (10000000 00 0 0))

; the scales

(defConstant *MAJ-SCALE*' (10101101010 1))
(defConstant *NMIN-SCALE*'(101101011010))
(defConstant *HMIN-SCALE*' (10110101100 1))

;; update these to change key
(defVar *CURRENT-SCALE* *maj-scale*)
(defVar *TONIC* 0)

; intervals up

(defConstant *FZ-2*'(00.9100000000 0))
(defConstant *FZ-3*'(00010.90000000))
(defConstant *FZ-4*' (000001050000 0))
(defConstant *FZ-5*'(0000000.9105000))
(defConstant *FZ-6*'(0000000010.900))
(defConstant *FZ-7*'(00000000000.91))

:intervals down

(defConstant *FZ-2B*'(0000000000 1 0.9)
(defConstant *FZ-3B*'(000000000.9100))
(defConstant *FZ-4B*'(0000000.51000 0))
(defConstant *FZ-5B*'(00000.510.900000))
(defConstant *FZ-6B*'(000.910000000 0))
(defConstant *FZ-7B*'(00.9100000000 0))

; pitch classes
(defConstant PC-C 0)
(defConstant PC-DFLAT 1)
(defConstant PC-D 2)
(defConstant PC-EFLAT 3)
(defConstant PC-E 4)
(defConstant PC-F 5)
(defConstant PC-GFLAT 6)
(defConstant PC-G 7)
(defConstant PC-AFLAT 8)
(defConstant PC-A 9)

Peter Fleea 6/30/09 9

Fuzzy Music in Lisp

(defConstant PC-BFLAT 10)
(defConstant PC-B 11)

Transposition

Transposition of pitch class sets is done by circular rotation to the right. The last element
is moved to the front as many times as required. This can be done by ror-n, which takes a
list and the number of steps to rotate.

2 (ror-n'(100000000 00 0) 3)
(000100000000)

I seldom rotate to the left, but that is required for finding normal form in pitch list
analysis.

?(rol-n'(047)2)
(704)

Transposition of sets may occasionally be needed without rotation, in which case you
wind up with a larger set. shift-n will do this, returning a two octave set. This can
simplify voice leading. A negative (left or down) shift will return a set based one octave
lower than the input.

? (shift-n'(100000000000)3)

(000100000000000000000000)

Conversion of Sets to Pitch Class

At the end of the day, operations carried out as fuzzy sets will need to be converted to a
pitch or group of pitches. There are two functions to do this: top-n-positions returns a list
of indices of the highest memberships in the set, Ltop returns the index (not a list) of the
highest member.

? (top-n-positions (00100 00.900 0.7 0 0) 3)
(269)

2 (Itop'(000.9000100 0.7 0 0))
6

Building sets from pitch lists
Converting pitches to sets is available in make-set.

? (make-set'(2 6 9))
(001000100100)

Peter Fleea 6/30/09 2

Fuzzy Music in Lisp

Converting to playable form

The list returned by make-triad-list can be placed in proper order by ascend-list. and
moved to a usable MIDI note range

? (ascend-list '(7 11 2))
(7 11 14)

? (add-oct '(7 11 14) 3)
(43 47 50)

The octave specified by the second argument to add-octave is octaves above 0, not the
MIDI or traditional octave number. You may wish to modify this function to suit your
preferred usage.

A chord list can be converted to an event with the function make-chord-event, which
refers to global defaults for duration, channel and velocity, if these are not supplied.

(defVar *DEFAULT-DUR* 1000)
(defVar *DEFAULT-CH* 1)
(defVar *DEFAULT-VEL* 127)

(defun MAKE-CHORD-EVENT (pitch-list &optional (time 0)
(dur *default-dur®)
(ch *default-ch*)
(vel *default-vel™))
"simple notelist to chord "

? (make-chord-event '(60 64 67))
((0 60 1000 1 127) (0 64 1000 1 127) (0 67 1000 1 127))

Interval builders

These functions provide chord elements using the global *current-scale*. Similar
functions are available intervals up to sevenths each way.

? (third-above 7)
11

? (fifth-above 7)

2

? (third-below 7)
4

? (fifth-below 7)

0

Peter Fleea 6/30/09 4

Fuzzy Music in Lisp

Triad Builders

Functions can use these to return chords with given pitch as specified element. These are
defined for triads:

? (as-root 5)

(58 11)

? (as-third 5)

(15 8)

? (as-fifth 5)

(10 1 5)

They return a pitch list in root position.

Basic Harmonizer

To illustrate the use of these functions, here is a harmonizer of the type used by many
keyboardists to accompany simple tunes.
Start with some global variables for solution sets and the like:

(defVar *SOL-SET* '(0 0 0)) ;places are (as-root as-third as-fifth)
(defVar *LAST-SOL* (0 0 0)) ; the last solution set-- stores inversion
(defVar *LAST-SOL-WEIGHT* 0.6) ; wieghting of last solution
(defVar *LAST-PC* 0)

(defVar *LAST-CHORD* '(0 4 7))

(defVar *LAST-ROOT* 7)

(defVar *THIS-ROQOT* 0)

(defVar *OLD-CHORD-SET*'(00100001000 1))

(defVar *AS-ROOT-SET*'(000000000000))

(defVar *AS-THIRD-SET*'(000000000000))

(defVar *AS-FIFTH-SET*' (0000000000 00))

When discrete choices are required (as opposed to the "find a value on a sliding scale"
operations usually encountered in fuzzy work) I use a process similar to voting. The
solution set has a member for each option. The rules add to the membership for the
options they favor. The amount added to the membership is determined by how true a
rule is.

For this harmonizer, I will consider the three triads that can be constructed including a
given pitch: pitch-as-root, pitch-as-third and pitch-as-fifth. The factors used will be the
number of pitches each has in common with the previous chord, and how often a
particular construction has been used. These are the rules:

Common tone rules

¢ if *as-root-set* has common tones with *old-chord-set* use as-root (1 0 0)
¢ if *as-third-set* has common tones with *old-chord-set* use as-third (0 1 0)
e if *as-fifth-set* has common tones with *old-chord-set* use as-fifth (0 0 1)

Peter Fleea 6/30/09 5

Fuzzy Music in Lisp

Last solution rules

¢ if last solution was as-root, use as-third or as-fifth (01 1)
¢ if last solution was as-third, use as-root or as-third (1 1 0)
¢ if last solution was as-fifth, use as-root (100)

The results of all of these rule will just be added together, which may look like this:
(532)
The Ltop function will then pick a winner.

Here are the complete functions that evaluate the common tone rules. These work
through global variables so they can easily be called in conjunction with other functions.

This counts the tones in common, using sets:
(defun COMMON-TONES (set1 set4)
(sumup (fz-intersect set1 set4)))

This lists the number of common tones in the appropriate slot of a solution set.
(defun COMMON-TONE-RULES (set1 set2 set3 master)
(let ((result'(0 0 0)))
(setf (first result) (common-tones set1 master))
(setf (second result) (common-tones set2 master))
(setf (third result) (common-tones set3 master))
(fz-normalize-list result)))

This calls the test on the globals
(defun COMMON-TONES-TEST ()
(common-tone-rules *as-root-set*
as-third-set
as-fifth-set
(fz-crisp-up *old-chord-set*)))

Here's a trial run:

? (setq *old-chord-set* (make-Set (as-root pc-g)))
(001000010001)

(setq *as-root-set* (make-Set(as-root pc-c))

(setq *as-third-set* (make-Set(as-third pc-c)))
(setq *as-fifth-set* (make-Set(as-fifth pc-c)))

? (common-tones-test)
(1.00.0 0.0)

This shows a root position chord on C has more common tones with a G chord than the
other options. A second run confirms the operation

Peter Fleea 6/30/09 6

Fuzzy Music in Lisp

? (setq *old-chord-set* (make-Set (as-root pc-€)))
(000010010001)

? (common-tones-test)

(1.00.50.0)

This shows common tones between an Emin chord and chords with root as C or third as
C, and that there are more common tones on the root position.

To break up parallel motion, I favor solutions that will encourage a change of position
from chord to chord. To review:

¢ if last solution was as-root, use as-third or as-fifth

* if last solution was as-third, use as-root or as-third

e iflast solution was as-fifth, use as-root

(defun LAST-SOL-TEST ()
(let ((test (Itop *last-sol*)))
(cond
((=0test)'(011))
((=1test)'(110))
(t'(100)))

? (last-sol-test)
(011)

Here is the function that executes the rules. Note that the rules are just added up and the
highest vote-getter is chosen.

((defun PICK-CHORD (thenote)

(let ((the-pc (rem thenote 12)) (solSet '(0 0 0))(result))
(setq *as-root-set* (make-Set(as-root the-pc)))
(setq *as-third-set* (make-Set(as-third the-pc)))
(setq *as-fifth-set* (make-Set(as-fifth the-pc)))

(setq solSet (add-lists solSet (common-tones-test)))
(setq solSet (add-lists solSet (last-sol-test)))
(setq result
(case (ltop (setq *last-sol* solset))
(2 (as-fifth the-pc))
(1 (as-third the-pc))
(otherwise (as-root the-pc))))
(setq *old-chord-set* (make-set result))
result))

Here is a short run of pick-chord on the pitches@ 7 5 4 2 7 0

Peter Fleea 6/30/09 7

Fuzzy Music in Lisp

This is very dependent on previous state. If [evaluate a D, it will return (2 5 9), then the
same pitches will yield:

The importance of the initial state should be kept in mind in serious applications.
After the harmonization is determined, I modify the voice leading. Here are some rules:

* Leave common tones under the same finger
* [ftoo many root, then 6 or 6-4

* [ftoo many 6 then root or 6-4

* Do not follow 6-4 with 6-4

* Ifmotion is fifth, change inversion

* If'tonic, favor root a bit

These requires more global variables to keep track of previous results:

(defvar *how-many-root* 0)

(defvar *too-many-root* '(0 0.20.611 11 1))
(defvar *how-many-6-4* 0)

(defvar *too-many-6-4*'(0111111111))
(defvar *how-many-6* 0)

(defvar *too-many-6*'(00.206111111))

To figure suspended tones, examine each possible inversion and compare it with the
previously defined chord. We are looking for the same pitch in the same position. This
will be done by count-common;

(defun COUNT-COMMON (alist blist)

Peter Fleea 6/30/09 R

Fuzzy Music in Lisp

(if (or (null alist) (null blist)) 0
(+ (count-common (cdr alist)(cdr blist))
(if (equal (car alist)(car blist)) 1 0))))

? (count-common '(0 4 7) ‘(11 2 7))
1

We'll use this to initialize the solution set, called inv-set in the function. Inv-set is a three
member set which will contain votes for root, 6-4, and 6 inversion. With that order, the
Ltop function will return the number of steps to ror-n the root position chord. (Rotating
pitch lists gives inversions of the chord.) The entire rule looks like this: (clist is the chord
to be voiced)

(setq inv-set
(fz-normalize-list
(list (count-common *last-chord* clist)
(count-common *last-chord* (ror-n clist 1))
(count-common *last-chord* (ror-n clist 2)))))

this can easily be expanded to consider open and closed positions. To count the number
of times an inversion is used, we'll call a function to set the *how-many- variables once
the result is calculated.

(defun UPDATE-COUNTS (inversion)
(case inversion
(0 (setg *how-many-root*(1+ *how-many-root*))
(setq *how-many-6-4* 0)
(setg *how-many-6* 0))
(1 (setq *how-many-root* 0)
(setg *how-many-6-4*(1+ *how-many-6-4*))
(setg *how-many-6* 0))
(2 (setq *how-many-root* 0)
(setq *how-many-6-4* 0)
(setg *how-many-6* (1+ *how-many-6*))))
inversion)

By returning the input variable like this, the function can be put in line with the result
calculation.

These are used in the function by this type of code:

(setq inv-set
(add-lists inv-set
(fz-rule *how-many-root*
too-many-root (0 0.8 1))))

Peter Fleea 6/30/09 9

Fuzzy Music in Lisp

To detect downward fifths there is this little function:

(defun CHECK-MOTION-FOR-FIFTH (arg1 arg2)
(and (= 7 (- arg1 arg2))
(/= *last-root* (car *last-chord*))))

The complete inversions function is this

(defun MAKE-INVERSION (clist)
(let ((inv-set '(0 0 0)) (the-root (get-root clist)))
(setq inv-set
(fz-normalize-list
(list (count-common *last-chord* clist)
(count-common *last-chord* (ror-n clist 1))
(count-common *last-chord* (ror-n clist 2))))) ;rule 1
(setq inv-set
(add-lists inv-set
(fz-rule *how-many-root*
too-many-root '(0 0.8 1)))) ;rule2
(setq inv-set
(add-lists inv-set
(fz-rule *how-many-6-4*
too-many-6-4'(1 0 1)))) ;rule 3
(setq inv-set
(add-lists inv-set
(fz-rule *how-many-6*
too-many-6 '(1 0.8 0)))) ; rule 4
(if (check-motion-for-fifth *last-root* the-root)

(setq inv-set (add-lists inv-set '(1 0 0)))) ;rule 5
(if (= *tonic* the-root)

(setq inv-set (add-lists inv-set '(0.2 0 0)))) ; rule 6
;(format T "~A "inv-set) ; for adjusting rules
(setq *last-root* the-root) ;remember for next time
(setq *last-chord* (ror-n clist (update-counts (ltop inv-set))))))

Running a test set of (04 7)(59 0)(2 5 9)(7 11 2)(0 4 7) returns

Peter Fleea 6/30/09 10

Fuzzy Music in Lisp

A reasonable passage.

Putting it all together requires most of the functions covered here in a long string. This
harmonizer expects both a pitch-list and duration-list and returns the tune with an
accompaniment in a low octave. An example is provided in the file.

(defun Harmonize (plist dlist &optional (time 0))
(if (or (null plist)(null dlist)) ()
(append
(make-chord-event
(cons (car plist)
(add-oct
(ascend-list
(make-inversion
(pick-chord (car plist)))) 4)) time (car dlist))
(Harmonize (cdr plist)(cdr dlist) (+ time (car dlist))))))

Peter Fleea 6/30/09 11

