
Fuzzy Operations in Lisp
The file fuzzy.lisp contains a library of basic fuzzy operations. To demonstrate these, I’ll
use the following fuzzy sets:

(defVar TEST1 '(0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0))
(defVar TEST2 '(1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0))
(defVar TEST3 '(0 0 0 0.2 0.4 0.6 1.0 0.6 0.4 0.2 0.0))
(defVar TEST4 '(0 0.2 0.4 0.6 1.0 0.6 0.4 0.2 0.0 0 0))

Fuzzy Complement
The fuzzy complement of a set is built by subtracting all members from 1.0.
The function fz-complement does this.

? (fz-complement test1)
(1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.19 0.099 0.0)

Fuzzy Intersection
The fuzzy intersection of tow sets is produced by taking the maximum membership from
either set a each point. This is produced by fz-intersection.

? (fz-intersection test1 test2)
(0.0 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1 0.0)

Fuzzy Union
The fuzzy union of two sets is built from the lowest memberships at each point. The
function is fz-union.

? (fz-union test1 test2)
(1.0 0.9 0.8 0.7 0.6 0.5 0.6 0.7 0.8 0.9 1.0)

Clipping
Clipping a set reduces any memberships above the clip value to the clip value. This is
done by fz-clip.

? (fz-clip test1 0.5)
(0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5)

Adding Lists
Adding lists is not a traditional fuzzy operation, but I often find it useful. Add-lists only
operates on two lists at a time.

? (add-lists '(1 2 3) '(4 5 6))
(5 7 9)

Normalization
Normalized lists have their values adjusted so the greatest membership is1.0. It is often
necessary after adding lists.

? (fz-normalize-list '(0 1 2 3 4 5 6))
(0.0 0.166 0.33 0.5 0.66 0.833 1.0)

Crisp sets
Occasionally, we want to convert a fuzzy set into a traditional ordered set (known to
fuzzy aficionados as crisp sets).

? (fz-crisp-up '(0 0.2 0 1))
(0 1 0 1)

Bounded Addition
It is often useful to accumulate data into a list by adding a small increment to members
corresponding to a sample's value, building a histogram on the fly. (It's a good way to
keep track of notes played to determine key, for instance). It's important to keep values
limited to 1 so that reducing the value is responsive. Bounded-add-to-n adds a value to a
specified member only if that member is less than 1.0. The function includes a setf, so the
input list is modified.

? (defvar testlist '(0 0 0 0 0 0 0 0 0 0 0 0))
testlist
? (bounded-addto-n testlist 4 0.3)
(0 0 0 0 0.3 0 0 0 0 0 0 0)
? (bounded-addto-n testlist 4 0.3)
(0 0 0 0 0.6 0 0 0 0 0 0 0)
? (bounded-addto-n testlist 4 0.3)
(0 0 0 0 0.89 0 0 0 0 0 0 0)
? (bounded-addto-n testlist 4 0.3)
(0 0 0 0 1 0 0 0 0 0 0 0)
? testlist
(0 0 0 0 1 0 0 0 0 0 0 0)

Bounded subtraction
Bounded subtraction is the complement of bounded addition, limited to 0. When we
detect a note is unlikely to be in a key (for instance after the note below and above are
played) we reduce its value in the histogram. this also includes a setf

? (bounded-subfrom-n testlist 4 0.3)

(0 0 0 0 0.7 0 0 0 0 0 0 0)
? (bounded-subfrom-n testlist 4 0.3)
(0 0 0 0 0.39 0 0 0 0 0 0 0)
? (bounded-subfrom-n testlist 4 0.3)
(0 0 0 0 0.099 0 0 0 0 0 0 0)
? (bounded-subfrom-n testlist 4 0.3)
(0 0 0 0 0 0 0 0 0 0 0 0)
? testlist
(0 0 0 0 0 0 0 0 0 0 0 0)

A reminder of the contents of some test lists:
? test1
(0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)
? test2
(1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0)

Weighting
 Weighting is often necessary to adjust the importance of rules in fuzzy operations. It
consists of multiplying each member by a scaling factor.

? (fz-weight test1 0.5)
(0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5)

Inference
Fuzzy inference is done by finding the index of a specified value in a fuzzy set. Since the
set is assumed to be continuous, it is appropriate to return a fractional index if the target
falls between two listed values. Fz-find performs this function. If the value is not within
the list, fz-find returns nil.

? (fz-find test1 0.5)
5.0
? (fz-find test2 0.55)
4.49
? (fz-find test1 2.5)
nil

We also need to be able to look between the values to find the interpolated membership at
a fractional index. this can be done with the fz-membership function.

? (fz-membership test1 7)
0.7
? (fz-membership test1 7.5)
0.75
? (fz-membership test1 11)
1.0

Fz-rule performs the fuzzy inference operation. Given a value, a predicate set and a
consequent set, fz-rule returns the consequent set weighted by the membership of

predicate at value. In the usual example, this is a way of inferring "if he is tall he is
heavy".

? (fz-rule 1 test1 test2)
(0.1 0.09 0.08 0.069 0.06 0.05 0.04 0.03 0.02 0.01 0.0)
? (fz-rule 7 test1 test2)
(0.7 0.63 0.559 0.489 0.42 0.35 0.279 0.21 0.139 0.069 0.0)

In some circumstances, it is more appropriate to clip the consequent set to the predicate
membership of value. Fz-clip-rule performs this variation.

? (fz-clip-rule 1 test1 test2)
(0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0)
? (fz-clip-rule 7 test1 test2)
(0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0)

To complete the inference several of these rules are executed and the resultant sets added
or unioned. A single result is extracted from this composite by the fz-centrioid function,
which returns the index of the median membership.

? test3
(0 0 0 0.2 0.4 0.6 1.0 0.6 0.4 0.2 0.0)
? (fz-centroid test3)
6.0
? test4
(0 0.2 0.4 0.6 1.0 0.6 0.4 0.2 0.0 0 0)
? (fz-union test3 test4)
(0 0.2 0.4 0.6 1.0 0.6 1.0 0.6 0.4 0.2 0)
? (fz-centroid test4)
4.0
? (fz-centroid (fz-union test3 test4))
4.999999999999999

Building sets
We often need to build sets with arbitrary membership functions in them. Here are some
lisp functions to construct sets.

(defun MAKE-FLAT (howmany value)
"Returns a list with all members set to value"

? (make-flat 12 0.5)
(0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5)

(defun MAKE-RAMP (howmany increment &optional (index 0))
"Returns a list of howmany values increasing by increment"

? (make-ramp 12 1/12)
(0.0 0.083 0.16 0.25 0.33 0.416 0.5 0.583 0.66 0.75 0.833 0.9166)

(defun FZ-MAKE-LINEAR-UP (howmany lastzero firstone)

"fuzzy set of arg1 elements ramping from 0 at lastzero to 1 at firstone "

? (fz-make-linear-up 12 4 7)
(0.0 0.0 0.0 0.0 0.0 0.33 0.66 1.0 1.0 1.0 1.0 1.0)

(defun FZ-MAKE-LINEAR-DOWN (howmany lastone firstzero)
"fuzzy set of howmany elements ramping from 1 at lastone to 0 at firstzero"

? (fz-make-linear-down 12 4 7)
(1.0 1.0 1.0 1.0 1.0 0.66 0.33 0.0 0.0 0.0 0.0 0.0)

(defun FZ-MAKE-TRAPEZOID (howmany lastzero firstone lastone firstzero)
"fuzzy set of howmany elements ramping from 0 at lastzero to 1 at firstone and back at
lastone to firstzero"

? (fz-make-trapezoid 12 2 5 7 10)
(0.0 0.0 0.0 0.33 0.66 1.0 1.0 1.0 0.66 0.33 0.0 0.0)

(defun FZ-MAKE-NUMBER (howmany number width)
"fuzzy set of howmany elements triangular with point at number and width of width"

? (fz-make-number 12 5 3)
(0.0 0.0 0.0 0.0 0.0 0.66 1.0 0.66 0.0 0.0 0.0 0.0 0.0 0.0)

