
Max and Pitch

Peter Elsea 9/28/10 1

Max and Pitch
Some of this appears in the introduction. It's important, so review it again.

Representation of Pitches in Max
In the Max environment, pitches are necessarily represented as numbers, typically by the
MIDI code required to produce that pitch on a synthesizer. We must begin with and
return to this representation, but for the actual manipulation of pitch data other methods
are desirable, methods that are reflective of the phenomena of octave and key.

A common first step is to translate the midi pitch number (mpn) into two numbers,
representing Pitch Class (pc) and octave (oct) this is done with the formulas1:

oct = mpn / 12
pc = mpn % 12

The eventual reconstruction of the mpn is done by

mpn = 12*oct + pc

In this system pc can take the values 0 - 11, in which 0 represents a C.

C C# D D# E F F# G G# A A# B
0 1 2 3 4 5 6 7 8 9 10 11

Oct ranges from 0 to 10. Middle C, which is called C3 in the MIDI literature and C4 by
most musicians, is octave 5 under this formula.

Once the pc is split from its octave, a variety of manipulations can be undertaken. For
instance, to transpose, you add the appropriate number of half steps. To go up a fifth (7
steps) from D (pc=2)

new pitch = (old pitch + steps) % 12

gives 9 (A) as the answer. The rem 12 is necessary to keep the answer within the range of
0 to 11.

To transpose down, you add the 12's complement (12-n) of the number. Down a fifth
starts with the complement of 7 which is 5. A fifth below D comes out (2+5)%12 or 7
(G).

1 The / function is the integer divide, which throws away the remainder. The % operator is the rem
function, which divides by its argument and returns the remainder. Thus 5 % 2 = 1. This is often confused
with modulo, which is counting around a clock face. This gives different answers when negative numbers
are used: -10 mod 12 is 2 whereas -10 % 12 is 10. Music really requires modulo, but it's not included in
many computer languages. We avoid problems by keeping all pitch classes positive.

Max and Pitch

Peter Elsea 9/28/10 2

This patcher illustrates the principles of extracting and manipulating pitch classes.

Generating Pitches
The notein object is not the only way to create notes in Max. Here are some strategies to
play with:

The random object will create apparently random numbers. The numbers are actually the
result of a mathematical formula applied to the last number produced. The values change
in a way that is not easily predicted, and if the numbers are studied over a long period of
time any one is just as likely as any other.

Max and Pitch

Peter Elsea 9/28/10 3

You can get repeatable sequences with the seed function. The message "seed n" (with n
any number but 0) will restart the formula with the seed value. Seed 0 uses a number
based on the time the computer has been running, which will not be predictable. Seed 0 is
the default.

The urn object selects from a series of numbers in a random order. (Like dealing cards)
When all have been output, the right outlet bangs to tell you. A clear message will start
the dealing again.

The decide object just gives 0 or 1, like flipping a coin. Decide performs this task better
than random 2 because the random algorithm has a slight preference for odd values.

The drunk object executes the "random walk" procedure. In this, the output is a random
distance from the last output. The noise is "Brownian", and is sometimes interesting, but
pitches repeat a lot.

There are a lot of ways to generate fractal note patterns. There's no object per se, but
expr allows you to use any of the classic fractal formulas. Here's a patcher using one:

This will always play the same
pattern of notes, but that pattern
defies description. The pattern you
get depends on the contents of the
float object. If you seed it with a
random number between 0 and 1 each
time the patch is loaded, the results
will always come out different.

We multiply by 48 and add 36 to get
the outputs into interesting octaves.

For more about this kind of process,
see the essay Max & Chaos.

Max and Pitch

Peter Elsea 9/28/10 4

Generating Scales

You can make chromatic scales
with the counter object. It has
inlets for direction as well as
beginning and ending values so
you can make very complex
arabesques. The patcher shown
just gives the basics, a scale up or
down. The select objects are there
because a long standing bug in
counter makes it difficult to
detect the end of the count.
Instead of using the overflow and
underflow outlets, you have to
detect the last number of the
count series and use that to turn
the metro off.

A major scale is represented by the numbers
0 2 4 5 7 9 11. If we keep these in a list,
they are easy to manipulate with Lobjects.
For instance, we can shift the scale to any
octave just by adding a multiple of 12. We
can transpose it to any key by adding the
pitch class that represents the key desired.

Scale Degrees
In theory class, we learned to refer to notes of a scale as first, third, seventh etc.
with the added modification of major or minor. There's not a lot of call for this in
computer music, but if you wish, you can use a coll to retrieve the numerical
equivalent of any label. The contents would look like this:
do, 0;
re, 2;
mi, 4;
fa, 5; etc.

This can work either way.

Max and Pitch

Peter Elsea 9/28/10 5

Processing Random Pitches
Randomness is most effective when tamed by some musical rules. A very powerful rule
type is the "sieve", which lets some notes through, but rejects others. The Lsieve object
does this handily. Lsieve 0 2 4 5 7 9 11 will only allow the notes of C major through.

Any note that fails the test in this patcher will cause the random object to try again,
because failed values fall out the right outlet. You need to be very careful when using this
type of feedback process. If Lsieve were to reject everything random puts out (for
instance if it had all values higher than the range of the random object) the patcher would
go into an endless loop and a stack overflow would occur. A safer approach would be to
omit the feedback (leaving holes in the stream of notes) or to trigger some other process to
create a note.

The secret to generating an interesting piece with sieves is to make the sieves change in
some way. The values accepted by Lsieve can be changed by sending a list in the right
inlet.

The Lfilt object has a complimentary action. It will reject whatever is in its argument list.
The values to reject can be changed by sending a list to the right inlet. What does this
patch do?

Max and Pitch

Peter Elsea 9/28/10 6

The Lsieve and Lfilt objects work by throwing data away. Another approach to the
constraint problem is to change unwanted data somehow. A simple way to do this is with
the funbuff object. The funbuff stores a series of pairs (lists with two members). Once
the pair has been input, funbuff will produce second value in the pair any time the first
comes in. If an input value is not in the funbuff, the next lower input value that is in there
will be used. This patcher will keep everything in C major:

The Lclose object performs a similar function.

Max and Pitch

Peter Elsea 9/28/10 7

Chords
Playing block chords is easy in Max, all you have to do is send the individual notes to
makenote at the same time. Of course, all actions in Max are really carried out one at a
time, but this can occur so fast that chords sound simultaneous to our ears. The main
difficulty is figuring out whether to send a major or minor chord for each scale degree.
Here is a basic approach:

The Lsieve objects sort the scale notes according to the chords they should have in
Cmajor. A "wrong" note is played, but doesn't get a chord.

The Ladd objects create the chord as a list. The pitch class input is added to each member
of the initialized list. The iter object turns this list into three individual pitches.

All else is as described earlier. There are more approaches to chord building in the Max &
Chords tutorial.

Max and Pitch

Peter Elsea 9/28/10 8

Serial Manipulations

Here is a patcher that demonstrates how to do traditional row manipulations. Zl rev
reverses lists. The graphic gate is used here to turn it on or off. I used the graphic gate
rather than switch or gate because the latter are turned off when a patcher is first opened.

Lcomp 12 will provide the inversion of the row. There is an Linvert object, but the math
definition of inversion is not the same as that in music. Musical inversions are produced
by subtracting the pitch class from a constant (12), which is really the complement
operation.

Ladd provides any desired transposition.

