
Notes on Program Design with Max

Peter Elsea 10/16/11 1

Notes on Program Design with Max
The most common question I hear from Max learners is "How do you design a patch?".
This is probably the most common question in any programming language. It comes from
beginners and advanced students alike. There are books on the topic (none specifically
about Max as far as I know) and expensive workshops at luxury resorts. Of course there's
plenty of advice on the internet1.

Traditions of Programming
Most of the books and advice boil down to "This is how I design programs", but it never
hurts to look at what people are doing and teaching. Some common themes you will
encounter2 are "Algorithms vs. Overhead", "Top Down Programming", and "Design
Patterns".

Overhead
The majority of the code of most programs is concerned with mundane jobs like getting
data from key presses and saving data in files. The algorithms are the meat of the
program, the code that does the actual work. Max takes care of most of the overhead–
that's why we use it.

Top Down and Bottom Up
Top Down Programming is nothing more exotic than designing the whole program on
paper before starting to code. The alternative is Bottom Up , where you jump into the
hardest part of the problem and get some algorithms working on selected data before
worrying about how to put the whole thing together. Top Down is favored in corporate
situations where the process has to be parceled out to many people3. Some of these
people are called designers and just work on scratch paper and whiteboards, others are
coders and have to know how the language works. If you just hand a problem to an
independent programmer, he will probably work bottom up.

Design Patterns
There have been millions of programs written, enough for scholars to start analyzing
them to look for similarities in structure. It turns out that the majority of programs fit one
of about six models. Max patches don't fit the categories very well, primarily because the
scholars are mostly interested in business applications. However, let's see if we can start
with these to identify some typical Max patching patterns.

1 A good example is http://sites.google.com/site/yacoset/Home/how-to-design-a-
computer-program by C. Lawrence Wenham.
2 In 2011, anyway. The field is subject to fads, and some fads stick around longer than
others.
3 It's also favored in schools, where Bottom Up is just too messy to teach.

Notes on Program Design with Max

Peter Elsea 10/16/11 2

One-Shot
This is a program that only does one thing once. "Hello World" is the archetype in most
languages. The closest thing I can think of in Max is the function that converts tempo into
milliseconds per beat:

Figure 1.
We don't often use Max this way, but such operations may be part of a larger program.

Batch
A batch process performs a set of operations on a whole load of data. The user gathers all
input, the program runs, and the output is presented together.

Figure 2.
Again, in Max this normally would be part of something else, but I have seen a few
examples. Luke DuBois used Max to process copious numbers of data files from surveys
and the US census to create the maps in "A More Perfect Union"
http://perfect.lukedubois.com/

Processing loop
The loop performs an operation repeatedly. The operation always starts by checking for
input (this is called "polling"). If there is no new data to work with, the operation is
skipped. Many external interfaces are handled this way.

Notes on Program Design with Max

Peter Elsea 10/16/11 3

Figure 3.
Some interface objects, such as the hi object in figure 3 manage the polling on their own.
Others, such as the serial object, must be polled by a metro. That the responsiveness of a
polled object is limited by the polling rate. Figure 3 gathers data every 30 milliseconds,
so there might be that much delay from action to result.

Pipeline
A pipeline consists of a line of processing objects where data is shunted through
continuously. The key is that the first object gets started on the second data item while
the first data item is being processed by the second object. Figure 4 emulates the system
using buckets4. The counter is producing a series of numbers, the most recent being 4. the
previous value 3 has just been added to ten. The 2 before that was added to ten and the
resulting 12 multiplied by 5. Finally we see that (1 + 10) * 5 -5 is 50.

Figure 4.

4 A bucket stores a value until a new one comes in to take its place. The stored value is
then sent along.

Notes on Program Design with Max

Peter Elsea 10/16/11 4

Figure 4 isn't much good except as an illustration, but this is what happens all the time in
the audio chain and in the GL objects of jitter. Pipelines are very efficient in processing
data.

Workflow
A workflow is like a pipeline, except for the overlapping operations part. Data comes in
from a continuous source, but all operations are performed on each input before the next
is looked at. Jitter works like this, which is why visuals can slow down but audio doesn't.

Figure 6.
A frame is fetched from the movie and processed by the tiffany and robcross objects
before showing up at the pwindow. Even if the qmetro fired processing would not start on
a new frame before the current one is finished.

Model-View-Controller
The model-view-controller paradigm (M-V-C) is very in right now. The basic premise is
the data is contained in a code module called the model, and the user interacts with a
different module called the view. The controller is the section that connects the view and
model together. A DAW program like Logic is a good example. The model is the tracks
of audio or MIDI events, and the various editing windows are views. This is a good way
to manage huge programs, but few Max patches will be so ambitious.

Stimulus-Response
While the foregoing are usually covered in standard program design texts, they aren't
very common in Max. The essence of Max is message passing, which means Max is
essentially a reactive system. Don Buchla described this as the stimulus-response model5.
This views the patch as an organism with behavior triggered by user input. This mimics
the operation of musical instruments. The activity can be summarized as figure 7.

There are two kinds of input to a stimulus response system. Some input does not cause a
response, it merely affects what will happen when a stimulus comes in. As an example,
you may choose a key for a harmonizer. This kind of input sets context. The stimulus is
any action that elicits an immediate response. The system may have more than one
response available, chosen according to context or details of the stimulus.

5 I saw this in the manual for a program for a Buchla computerized synthesizer from
1980.

Notes on Program Design with Max

Peter Elsea 10/16/11 5

Figure 7.
If the stimulus is MIDI data, the system can respond instantly. This is because the MIDI
hardware can interrupt ongoing computations without waiting for a poll6.

Combinations
Most programs are some combination of any of these design patterns.

Program Design as a Process
Computer programs are based on a need to get a task done. It should go without saying
that the better the task is understood, the better the program will work. Describing a task
is more difficult than it seems at first. There are many methodologies, but here are the
things that must be known before design can even begin.

Goals
The purpose of a program is always the first thing to define. This can be conveniently
stated as output, or what you have after the program has run that you didn't have before.
This is complicated if the program is to do more than one thing, and most programs do.
For instance, you may want a program to balance your checkbook, but that probably
includes displaying the balances on a screen, printing them out, and storing them in a file
for the next run.

In the computing world, goals are called specifications, and are written up in great detail.
The goals are often developed by interviewing potential users or looking at similar
programs that already exist.

Input
Input is also known a user experience. This is what a user or the world supplies as the
program runs. You can get advanced degrees in designing user experiences and the
interface that connects the user to the program. One common approach to specifying the

6 If overdrive is on. Actually there is now a polling loop in the MIDI process, but it is so
short that delays are imperceptable.

Notes on Program Design with Max

Peter Elsea 10/16/11 6

user experience is to write a script or draw a storyboard showing what a user does. If
input comes from the world, the specification must include details of the form that input
takes.

Dependencies
Dependencies describe the relationships between the data variables in a program. A
program to convert currency values between dollars and euros will have dependencies
between the exchange rate, the value input and the direction of change. This includes a
lot of data that is internal to the program such as the relationship between dollars and
cents.

Algorithms
Once the desired output, input and dependencies are known, it is time to explore methods
of getting from the latter to the former. These are also known as algorithms or formulas.
The source of algorithms is the great mystery of program design. In most cases, we
simply copy what someone else has done. We can find algorithms in textbooks, in online
libraries, and in other people's code7. Somebody somewhere invented these things, and
we honor them by extending their work to a new application8. If you can't find an
algorithm to use or modify, here are some approaches to coming up with a new one:

Take the problem apart into its smallest parts.
David Cope calls this "divide and conquer". One good way to do this is write a set of
instructions for doing the task. What this does is force you to look at the problem in
detail– once you have isolated all of the steps, you will probably discover each is solvable
with a standard algorithm and all you need to do is combine these in the right order.

Look at related problems and learn how they work.
There are surprising similarities between completely different fields. Suppose you are
trying to work out an algorithm for generating melodies from a desired set of pitch
classes. It might help to think of the pitches as destinations on a map, and the melody as a
route that visits these destinations. You can find a lot of material on map routing,
including the classic "traveling salesman problem", where various ways are presented to
create the shortest path or cheapest path through selected cities.

You should always be on the lookout for methods of solving problems, no matter what
the data actually represent.

7 The forums at Cycling74.com have lots of examples and pointers to users' web sites
where you will find more.
8 Some algorithms are patented or copyrighted. Usually, if you can find an algorithm in a
book or from more than one online source, it is "prior art" and the patent would not be
enforceable. Ideas can't be copyrighted, but the form of the idea can be, so always rewrite
code in your own terms. In any case, applications you make for yourself are exempt and
you do sell products, you won't be sued until you have enough sales to make it worth the
lawyer's time.

Notes on Program Design with Max

Peter Elsea 10/16/11 7

Imagine doing the problem backwards.
If you start with a desired output and try to get back to the input, you will learn a lot
about the problem. Don't get too hung up on this however– some processes are
irreversible.

Explain the problem to someone else.
You aren't asking them for the answer, it's just that the act of formulating a description of
the problem for someone else will force you to think from a new perspective.

Use brute force to work around the problem.
It's possible to get hung up on a small part of a program to the point that the whole
program never gets written. But there's one approach that will work with any problem.
List all expected inputs and write a possible good result for each. The results are put in a
table that is indexed by the input. This is completely arbitrary, but it will allow you to
move on to other parts of the program and return to this later. The number of cases you
can handle is determined solely by your patience. Of course, as you are working the table
out, you may get an insight that suggests an algorithm after all.

Style
There are a lot of elements to a program that are not directly related to getting the job
done. This is intimately connected to the user experience, but there's a lot of the
personality of the designer here too. Style is both external and internal. The external style
is what the world sees– aero effects, rounded patch cords, decorative fonts and so on. The
internal style is visible only during the programming process, but has a lot to do with the
efficiency and maintainability of the program. This includes details of layout and
encapsulation, comments, and the choice of methods where there are alternatives.

The role of Napkins in Software Design
Most designs get sketched out at some point in the process. This might be a formal
flowchart on a PowerPoint slide or a scribble on the back of a napkin. (One café near the
Apple campus in Cupertino used to provide napkins with a graph paper design.) This is a
great way to visualize the flow of the program and spot any holes in the concept. You
draw a box for each process, and make connections from box to box, checking as you go
that what comes out of a box is appropriate for the needs of the box below. The fact that
this looks a lot like a Max patch is not accidental.

Actually Writing Code
When most of the above is sorted out, you are ready to write some code. Of course it is
perfectly OK to write code before the entire program is designed. Good reasons to do this
are to try out algorithms or test interface layouts. Just don't be afraid to throw out what
you have written.

You will get conflicting advice on what to write first. Top Down is usually taught in
schools, but each coder has his own preference. Actually, the program design itself will
often suggest the best point of departure.

Notes on Program Design with Max

Peter Elsea 10/16/11 8

I like to start somewhere in the middle or the bottom of the patch, building the heart of
the code first. If I am following the stimulus-response model I will make the basic
response work with test input. Once I have a reliable response, I will connect it to the
output, then begin the interface.

A Sample Design
To illustrate the process, I'll develop a simple synthesizer. You've seen something like
this in class, but here I'll concentrate on my thinking during the design process.

Specifications
I start with specifications. This is terse, often just a list.

Goal
A one note at a time MIDI synthesizer with ADSR control of amplitude and a filter that is
adjustable relative to the played pitch.

Input
MIDI or an onscreen keyboard. ADSR and filter will be controlled by number boxes.

Dependencies
MIDI note numbers will be converted to frequency. The patch amplitude will be velocity
sensitive. The filter resonance will be fixed at 0.75. The filter frequency will be some
multiple of the note frequency.

Method
Signal generated by a [tri~] object with be applied to a [lores~] and a [*~], with an
[adsr~] controlling the [*~].

This is not the first set of specifications I came up with. There was a fair amount of back
and forth between this and the following step, as the diagram showed I had left things
out.

Notes on Program Design with Max

Peter Elsea 10/16/11 9

The Napkin Version

Figure 8.

Figure 8 shows the diagram of this program. It's tempting to skip this, since the Max
patch is so similar, but it really does tell you things. For instance, I revised this several
times to get the best control of filter frequency.

Test as You Go
Once I start coding, I build in small sections and test each as soon as I can. Figure 9.
shows the first part I put together.

Figure 9.
This is the heart of the patch. The number box controlling amplitude is temporary– it lets
me test this part of the patch on its own. From this I notice that the resonance setting was
too high. That was supposed to be a 0.75 in the lores~ box.

Notes on Program Design with Max

Peter Elsea 10/16/11 10

Figure 10.

The next step was to set up frequency control of the pitch. I used a k-slider (the keyboard
widget) to give me quick and easy input. I put it in polyphonic mode (click-on, click-off).
Mtof is very reliable if you are OK with equal tempered scales. Otherwise, you need
something else.

Figure 11.

Next I tackled the envelope problem. This showed another mistake. I forgot that the adsr~
object needs an input in the range of 0 to 1 if it is to control amplitude. I should have
caught that back in the design stage, but you never get them all. I'll stick a [/ 127.]

Notes on Program Design with Max

Peter Elsea 10/16/11 11

between the k-slider and the adsr~. Figure 12 shows a working version, with the skeleton
interface.

Figure 12.
After I had played with this a bit, I decided I preferred a saw for the basic waveform. I
also connected a notein directly to the k-slider. That will give me a display of what has
been played.

Once this is working, I can play with interface layouts in presentation mode. Interface
design is another study I plan to tackle in a separate tutorial.

Debugging
The next step in the process is testing the patch thoroughly. You must play it to all limits-
the full range of pitches, the full range of velocities and confirm that you are getting the
results you expected. Exercise the adsr and filter settings in the same way, trying to hit as
many combinations of values as you can. Save the patch and reopen it to make sure all of
the initial values are appropriate. Finally, get someone else to play it.

It is inevitable that this process will reveal problems. I will discuss how to find these
problems in a separate debugging tutorial.
pqe

