
Working With Poly~

Peter Elsea 2002 1

Working with Poly~ in Max

The poly~ object is the key to efficient use of the CPU in Max work. It is also
useful for chores that need a lot of parallel processing of any kind.

What is poly~?
Think of it as a stack of embedded patchers that share inlets and outlets. These
two arrangements are the same. Instead of having four explicit instances of the
beep~ subpatcher, [poly~ beep~ 4] encapsulates four beeps for the space of one.
four instances is trivial, but if you want 24 all you have to do is change the
number in poly~

Note that the logic of selecting which instance of beep~ is playing a particular
note is a bit different in the two. The problem of course, is getting the note off to
the proper beep~.

The old style uses the poly (no tilde) object. This keeps track of what is playing,
and assigns a voice number- the matching note off will be sent with that same
voice number. Packing and routing gets everything where it needs to be.

To get the same behavior from poly~, you send it the message [midinote nn vv]
where nn is the note number and vv is the velocity. Poly assigns voice numbers
(the docs call these "instance numbers") and sends the note offs to find the proper
voice.

Working With Poly~

Peter Elsea 2002 2

If you send the message note (with whatever arguments you need), the behavior
is simpler. The message goes to the next free voice, period.

There is a third way to manage the messaging in poly~. It's a bit more
complicated, but gives extra flexibility. The message "target n" sets voice n to be
the recipient of whatever comes next. (not counting note or midinote of course).
"Target 0" means send to all instances.

Thispoly~
So how does the Poly~ know what voices are available for note and midinote
messages? The embedded patcher has to tell it. Communication from the patcher
up to poly~ is via the thispoly~ object. The most important thing the voice
patcher sends to thispoly~ is a 1 (int or signal) to mark the voice as busy. To free
up the voice, send a 0. If you forget this, poly will be monophonic. The easiest
way to use thispoly~ is simply hook up the signal output to it. Then when the
signal goes to zero, the voice is marked as free. (Thispoly~ seems to be tolerant of
the occasional 0s that go by in an active signal.)

Working With Poly~

Peter Elsea 2002 3

Here's a simple voice that will work in a poly~:

The sound generator is phasor~ which makes a buzz. *~ adjusts output level as
controlled by line~, The patch is expecting a note number and velocity to turn it
on and a note number and 0 to turn it off. You can see how this is split by the
unpack, and sel 0. These send messages to line~ to give a quick attack and an
adjustable release. Note that the velocity from sel is multiplied by 0.00078 to
translate from velocities 0-127 to amplitude 0.0-0.10. It's important to keep the
sum of all signals coming out of the poly~ under 1.0.

In and Out
The inputs to a patcher in poly~ are handled differently than they are in ordinary
subpatchers. This example has both the old style and poly~ style inlets, so it will
work either way. There are four new objects to get in and out of poly~:
• in x makes an inlet that will accept messages. x is the inlet number. If you use

4 for x there will be at least four inlets. These are the messages that are
affected by target and note, with messages only appearing in the voices you
choice.

• in~ x is a signal inlet. Signals go to all voices always. If an in and in~ have the
same number, they will be the same inlet looking from the outside.

• out~ x is a signal outlet. The signals from all the voices appear mixed at the
outlet with no scaling, so it's easy to get distortion here.

Working With Poly~

Peter Elsea 2002 4

• out x is a message outlet. The message outlets always appear to the right of
the signal outlets, so if there are three out~s , out 1 will be the fourth outlet.

By the way- if you add these to a patcher that is already loaded in a poly~, (and
save it) the new outlets and inlets won't magically appear as they do with
embedded patchers. To get them to show, edit the poly~ by selecting the
argument and retyping it. (Strangely, the code inside is updated, so you only
need to do this if the number of inlets or outlets changes.)

Muting
One of the more important features of poly~ is muting. If you have 24 instances
of a complex patch in a poly~, you are going to chew up CPU pretty fast. It's nice
to be able to turn off unneeded signal processing, and the mute message to
thispoly~ will do that exactly that. No matter what you may read in the manual:
• mute 1 turns muting on, therefore the voice off
• mute 0 turns the voice on again.

The trick is to get muting to happen when the voice is really done, not just when
the note off arrives. Here's our voice modified to mute when unneeded.

Working With Poly~

Peter Elsea 2002 5

When the note on comes in, the mute 0 happens unequivocally. We need to get
the mute 1 from the bang at the end of line~, but this also bangs on the way up,
so it has to be prevented by a gate until it's really needed. The right outlet of this
poly~ shows the mute status, so its easy to test.

You can also mute voices from the outside, with the mute n 1/0 message to the
poly~.

Ripoff
No matter how many layers of polyphony you specify, eventually someone is
going to put down one key too many. What happens then is called ripoff.
Normally, if all of the voices in poly~ are busy, any new messages will be
ignored. If you give poly~ the message steal 1, something will be shut off
unexpectedly, probably with a click. Your voice patchers should be able to
handle this by one of these methods:
• Fade out the playing voice just before the new note comes in. Since this

requires predicting the future and I haven't written that object yet, it's not
very practical.

• Delay the new note a bit while the old one fades. This may be OK in some
cases, but you should be sure to delay only when it's absolutely necessary.

• Crossfade between the old note and the new note. This is my preferred
approach.

To make a crossfade, we'll put a poly~ in the poly~ by building an intermediate
patcher:

Working With Poly~

Peter Elsea 2002 6

 The deepbeep~ patcher depends on the legato object (that's an Lobject) for the
switching logic. Legato will provide a note off message for the playing note just
before sending the new note. (Legato is a version of makenote. There's a duration
parameter, which is set to 10 seconds in this example.)

Target
The target message allows you to control the action of poly more closely. Target
n switches instance n to be the current recipient of all messages. (Signals go to all
instances all the time, but you can use a targeted message to select a particular
signal for a particular instance.

Working With Poly~

Peter Elsea 2002 7

Here, I'm using the lpoly1 object to manage the polyphony of poly~. In this
configuration, the voice number chooses the target before the note message
arrives. Lpoly uses a ripoff algorithm I prefer to the one in poly~2. You can easily
roll your own in a patcher object. The right inlet controls the decay time of the
beep~ patcher. (see page 3) The target 0 preface sets all instances to receive the
message.

Other uses for poly~
Poly is part of the MSP package, but its uses are not limited to audio. Here's an
instance patcher that ramps from the current value to a new one:

Note that it always passes the channel number through. But as we need to keep
the current state of line associated with a channel, the master patcher uses target
messages:

1 This is a new version of lpoly I created after thinking about this example a bit. The second
argument does two things. It switches the operation so the voice number comes out its own right
outlet, and sets the number of the lowest voice. With only one argument, the voice number starts
with 0 and is at the start of the output list, appropriate for route.
2 Poly just rotates through voices starting from 1. Lpoly dumps the oldest voice, unless it is the
lowest pitch.

Working With Poly~

Peter Elsea 2002 8

This could easily become a 128 channel light controller.

Special messages
There are many more useful features in poly~ You can tweak the audio
performance by changing the sampling rate or vector size, trading quality for
efficiency (or vice versa). These can be done with arguments or messages. If you
set scheduling to internal with the local argument, events generated in the poly~
will have more accurate timing.

You can put #x type arguments in the instance patchers in the usual way. These
are filled by what ever follows the word args in the poly~ itself.

