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Advanced Math in Max

Eventually we will need to do something more complicated than the ordinary
math objects allow. This is not a tutorial on how to do that math, but a guide to
where the math can be done.

Basic operators:
+ input plus argument
- input minus argument
!- argument minus input
* input times argument
/ input divided by argument
!/ argument divided by input
% input divided by argument and the remainder returned.

C library functions
Trig functions and the like used to require expr, but in Max 4 some are available
as objects.

abs gives absolute value of input.
pow raises input to the power of the stored value. The result is

always float. Negative powers are roots, of course.
sqrt gives square roots.
sin, tan, cos find sine, tangent or cosine of angles. The input is in radians.

(You will remember that there are 2π radians in a full circle. To
convert from degrees to radians, multiply by 0.01745.)

asin, tan, acos give arcsine, arctangent or arccosine. The results are in radians.
atan2 Arctangent of x/y
sinh,tanh,cosh Hyperbolic versions
asinh, atanh
atanh2,acosh,

Hyperbolic versions

cartopol Cartesian to polar coordinate conversion
poltocar polar to Cartesian coordinate conversion

If you have trouble remembering exactly which ratio is the cosine anyway, just
recite    SOH, CAH, TOA  until you feel better about it. The important thing to
remember is that the sine is the one that starts on 0.

Math with signals
There are a set of similar objects in MSP. These indicated as

 (for instance) and process signals. The thing to remember is that signals
are continuous, so connecting two signals to the same inlet is not the same as
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connecting two floats. In the latter case you get the most recently triggered
message. Two signals at the same inlet are added.

Expr
The expr object allows you to enter complex expressions. This can save a lot of
space, and provides access to even more functions. To define an inlet, include $i1
or $f1 in the expression. The $i version is treated as an integer, the $f version is
treated like a float. The numeral indicates which inlet, up to 9. Given these rules,
the expression

will return the input plus the product of stored values 2 and 3. There are rules of
precedence when operations are mixed like this. From highest to lowest:

• ~    bitwise not
• !      logical not
• -      negation
• *, /, %    multiplication, division, remainder
• +,  -   addition and subtraction
• <<,   >>   left and right shift
• <  >    <=    >=   comparisons (which will be 1 or 0)
• &   bitwise AND
• ^    bitwise XOR
• |   bitwise OR
• && logical AND
• || logical OR

Precedence can be altered by parentheses, so [expr ($f1 + $f2) * $f3]  multiplies
the sum of input 1 and 2 by input 3. Be careful when you type parentheses -- if
they don't balance out, you'll get an error message and all connections will be
broken. Occasionally you'll get an "expression too complicated" error. If so, break
the work into two exprs.

Functions in expr
C library functions are available in the expr object. Many C functions take two
arguments, such as pow(a,b). Since Max is skittish about commas, you have to
write this as

The functions implemented as objects (listed above) are all in there. The extra
functions are:

exp($f1) gives e to the $f1
log($f1) and ln($f1) both give natural logarithm of $f1
log10($f1) gives the base 10 logarithm
fact($f1) gives factorial
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Comparisons
All Max comparison operators return 1 if the comparison is true and 0 if the
comparison is false. A string of false attempts will give a string of 0s. If you need
a function that only gives output in the true cases, use select. If you only want to
detect the change from true to false, use a change object on the output. Here's a
list of the operators:

• <   input less than stored value
• > greater than
• ==  equal to (there is no = object)
• != not equal
• <= less than or equal
• >= greater than or equal

Logic
The logic operators consider 0 to be false and any integer (including negatives) to
be true. A float input is truncated, so it has to be 1.0 or more to be true. Note the
difference between integer logic and bitwise logic, in the next section.

&&     AND :
0 AND 0 = 0
1 AND 0 = 0
1 AND 1 = 1

|| OR     :
0 OR 0 =0
  0 OR 1 = 1
1 OR 1 = 1

! NOT  :
NOT 0 = 1
NOT 1 = 0.

 (This is an Lobject; Max does not have a not function except in expr.)

 ^                XOR  :
 0 XOR 0 = 0
 1 XOR 0 = 1
1 XOR 1 = 0

There is no XOR operator, except in expr and the Lobject Llogic. The Max logic
operators are just like all other math objects in that only left inlet triggers the
output. The Llogic functions are gates, giving output for any change in input.
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Bitwise Logic
Bitwise logic follows the rules given above, but works on the individual bits of
the numbers. Thus 1 &  4 = 0 because binary one and binary 4 have no bits in
common.
• &    bitwise AND
• |     bitwise OR
• <<   shift left. The stored value sets how many positions the bits are shifted.
• >>  shift right.

Max does not have a bitwise NOT function except in expr ([expr ~$i1]). There is a
Bitnot~ function for processing audio signals.

The most useful bit operation is the AND.  [&  127] will clip all values to 7 bits,
which is often needed for MIDI messages. This use of 7 is called masking. You
can get a sense of how a number can be masked by looking at it in binary. 127 in
binary is 01111111, so the lower 7 bits of another number would survive the
AND operation. But 128 & 127 = 0.

Bitwise OR combines numbers in a strange way. The result has all bits set that
were 1s in either input. 128 (10000000) | 127 (01111111) = 255 (11111111).

Shifting left is equivalent to multiplying by a power of 2. Shifting 1 bit is X2,
shifting 2 bits is X4 and so on. Shifting right is like dividing by powers of two.
You aren't going to get any float answers, though.

Hardware Logic
The logic chips used in circuit  design follow the rules of bitwise logic, but
feature multiple inputs, and a change at any input will change the output state.
The Llogic object takes an argument to determine its function and another to set
the number of inputs. Some operations just seem clearer with a hardware
approach.

The Operations in jit.op
The tricky part of using the operators in jit.op is making sense of the pictures you
get. Jit.op works on each plane of data independently, so it is easy to scramble
the colors. Here is slightly more information that is found in the help file.

Arithmetic
pass: pass left input through with no change.
* : multiplication;  this will dim the image.
/ : division; This will usually make the image nearly black.
+ : addition; Anything white in either image will be white.
- : subtraction; Makes dark images
+m : addition modulo; Modulus is 255. 200 +m 200 = 145. Rainbow effects
-m : subtraction modulo; Modulus is 255. 100 -m 200 = 155.
% : modulo; The right is subtracted from the left until the result is less than the
right.
Min : minimum;
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Max : maximum;
Abs : absolute value; This will only work in situations where negative numbers
are in use.
Avg : average of left and right;
Absdiff : absolute value of difference between left and right;
!pass : pass right input, with no change;
!/: right input/left input;
!-: right input-left input;
!% : right input/left input;
ignore: leave previous output value; this is a freeze function;
fold : mirrored modulo (float32/float64 only); left subtracted from right until the
result is between 0 and right.
wrap : positive modulo (float32/float64 only);  right subtracted from left until the
result is between 0 and right.

Bitwise logic
&: bitwise and; darker
|: bitwise or;  lighter
^: bitwise xor; The left goes negative where the right is white.
~: bitwise compliment(unary); This makes a negative of the left.
>>: right shift; Mostly black
<<: left shift;  Sparkley

Logic
These result in 0 or 1 for the pixel. You get black, R G or B.
&&: logical and;
||: logical or;
!: logical not(unary);
>: greater than;
<: less than;
>=: greater than or equal to;
<=: less than or equal to;
==: equal;
!=: not equal

Logic switching
These perform the logic and pass the left value if it's true. These are still plane by
plane though. You usually get R G or B pixels. These work best with a black and
white right input.
>p: greater than(pass);
<p: less than(pass);
>=p: greater than or equal to(pass);
<=p: less than or equal to(pass);
==p: equal(pass);
!=p not equal(pass)

Trig Functions
These only work on floats, not on images.
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sin: sine;
cos: cosine;
tan: tangent;
asin: arcsine;
acos: arccosine;
atan: arctangent;
atan2: arctangent(binary);
sinh: hyperbolic sine;
cosh: hyperbolic cosine;
tanh: hyperbolic tangent;
asinh: hyperbolic arcsine;
acosh: hyperbolic arccosine;
atanh: hyperbolic arctangent;

More Float Math
exp: e to the x;
exp2: 2 to the x;
ln: log base e;
log2: log base 2;
log10: log base 10;
hypot: hypotenuse(binary);
pow: x to the y(binary);
sqrt: square root;
ceil: integer ceiling;
floor: integer floor;
round: round to nearest integer;
trunc: truncate to integer;

Complex Functions in Jitter
When we need to access a function repeatedly, is often best to calculate the
function over the range of expected inputs and store the results in a matrix. Then
the function can be computed as the patch is loaded and won't affect
performance. Here is an example:

To compute:

F[x] = (1-kx)sin(x)

Which looks like this:
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Use a patch like this:

At load time, the uzi runs the numbers 0 to 199 through the math and the results
are stuffed into the matrix. The values can be accessed later using the getcell
message. This patch is in a subpatcher and appears as a single object in the main
patch.

Jit.expr
Jit.expr is an expansion of expr that allows matrices as input. You have all of the
jit.op operations (and a couple of useful additions, like the constant PI) but in
addition to  $f1 and $i1 you have tokens that pull values out off the matrix. Note
that you have to explicitly say how many inputs jit.expr should have with the
@inputs attribute. You also have to state the expression as an expr attribute with
quotes around it.
The expression needs a matrix as input-- this sets the size of the output matrix.
(The input matrix need not actually be used in the calculation.)

These are the tokens:
in[n] this processes the whole matrix cell by cell.  n of 0 means the

left inlet.
in[n].p[m] This refers to one plane of a matrix
cell[n] This gives the integer address of the cell, where n is the

dimension index. Cell[0] is the horizontal address, cell[1] is
the vertical.

norm[n] this gives a normalized address. norm[0] would have the
value 0 at the left, 1.0 at the right.
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snorm[n] A normalized address between -1.0 and 1.0. This puts 0 in the
middle.

Matrixname The name of a matrix, which is similar to connecting it to a
right inlet.  This should match the input in size and type.

Matrixname.p[n] A particular plane of a named matrix.

These are useful constants.
PI
TWOPI
HALFPI
INVPI 1/PI
DEGTORAD TWOPI/360
RADTODEG 360/TWOPI
E Euler's constant
LN2 natural log of 2
LN10 natural log of 10
LOG2E log base 2 of Euler's constant
LOG10E log base 10 of Euler's constant
SQRT2 square root of 2
SQRT1_2 square root of 1/2

Here's an example of jit.expr in action:

This is like jit.op %, but multiplying the result times norm[1] gives the top to
bottom gradient.


